Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorHsi-Te Shihen_US
dc.contributor.authorChien, I-Chuen_US
dc.identifier.citation于華會、楊志玲、楊旭、譚梓峰、舒梟、劉若楠, 2010。藥用植物種質資源 ITS 序列研究進展。中國傳統草藥 41: 491-496。 施志昀、游祥平, 1999。台灣的淡水蟹。國立海洋生物博物館出版。 施習德, 2000。台灣蟹類的研究資訊。台灣博物 67: 39-49。 施習德, 2001。台灣的海岸生態。台灣博物 71: 58-69。 施習德, 2005。台灣淡水蟹研究之回顧。野生動物保育彙報及通訊 9: 26-32。 施習德, 2008。東亞的淡水蟹。科學發展。428: 40-45。 施習德, 2008。琉球與日本淡水蟹的多樣性。 台灣溼地 68: 2-23。 戴愛雲, 1999。節肢動物門: 甲殼動物亞綱: 軟甲綱: 十足目: 束腹蟹科, 溪蟹科, 中國動物誌。科學出版社。北京。 賴鈺清、施習德, 2012。臺灣南海溪蟹族群遺傳變異初探。2012 動物行為、生態與全球變遷研討會 (中國文化大學)。 Alvarez, I. & Wendel, J.F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29: 417-434. Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A. & Saunders, N.C. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population geneticsand systematics. Annual Review of Ecology, Evolution, and Systematics 18: 489-522. Baraket, G., Saddoud, O., Chatti, K., Mars, M., Marrakchi, M., Trifi, M. & Salhi-Hannachi, A. (2009). Sequence analysis of the internal transcribed spacers (ITSs) region of the nuclear ribosomal DNA (nrDNA) in fig cultivars ( Ficus carica L.). Scientia Horticulturae 120: 34-40 Biffin, E., Harrington, M.G., Crisp, M.D., Craven, L.A. & Gadek, P.A. (2007). Structural partitioning, paired-sites models and evolution of the ITS transcript in Syzygium and Myrtaceae. Molecular Phylogenetics and Evolution 43: 124-139. Blaxter, M.L. (2003). Molecular systematics: counting angels with DNA. Nature 421, 122–124. Blaxter, M.L. (2004). The promise of a DNA taxonomy. Philosophical transactions of the Royal Society of London 359: 669–679. Booton, G.C., Kaufman, L., Chandler, M., Oguto-Ohwayo, R., Duan, W. & Fuerst, P.A. (1999). Evolution of the ribosomal RNA internal transcribed spacer one (ITS-1) in cichlid fisfes of the Lake Victoria region. Molecular Phylogenetics and Evolution 11: 273-282. Buhay, J.E. (2009). “COI-like” sequences are becoming problematic in molecular systematic and DNA barcoding studies. Journal of Crustacean Biology 29: 96-110. Chu, K.H., Li, C.P. & Ho, H.Y. (2001). The first internal transcribed spacer (ITS-1) of ribosomal DNA as a molecular marker for phylogenetic and population analyses in Crustacea. Marine Biotechnology 3: 355–361. Chu, K.H., Ho, H.Y., Li, C.P. & Chan, T.Y. (2003). Molecular phylogenetics of the mitten crab species in Eriocheir sensu lato (Brachyura: Grapsidae). Journal of Crustacean Biology 23, 738–746. Cornel, A.J., Porter,C.H. & Collins, F.H. (1996). Polymerase chain reaction specices diagnostic assay for Anopheles quadrimaculatus cryptic species (Diptera: Culicidae) 40 based on ribosomal DNA ITS-2 sequences. Journal of Medical Entomology 33: 109-116. Cumberlidge, N. & Ng, P.K.L. (2009). Systematics, evolution, and biogeography of freshwater crabs. Crustaceana 18, 491–508. Daniels, S.R. (2003). Examining the genetic structure among populations of the common cape river crab Potamonautes perlatus from river systems in south africa reveals hydrogrphic boundaries. Journal of Crustacean Biology 23: 936-950. Daniels, S.R., Gouws, G., & Crandall, K.A. (2006). Phylogeographic patterning in a freshwater crab species (Decapoda: Potamonautidae: Potamonautes) reveals the signature of historical climatic oscillations. Journal of Biogeography 33: 1538-1549. Daniels, S.R., Mouton, P.leF.N. & Du Toit, D.A. (2004). Molecular data suggest that melanistic ectotherms at the south-western tip of Africa are the products of Miocene climatic events: evidence from cordylid lizards. The Zoological Society of London 263: 373–383. Daniels, S.R., Stewart, B.A., Gouws, G., Cunningham, M., & Matthee, C.A. (2002). Phylogenetic relationships of the southern African freshwater crab fauna (Decapoda: Potamonautidae: Potamonautes) derived from multiple data sets reveal biogeographic patterning. Molecular Phylogenetics and Evolution 25: 511–523. DeSalle, R., Egan, M.G. & Siddall, M. (2005). The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical transactions of the Royal Society of London 360: 1905–1916. Dover, G.A. (1982). Molecular drive: a cohesive mode of species evolution. Nature 299, 111-117. Ebach, M.C. & Holdrege, C. (2005). DNA barcoding is no substitute for taxonomy. Nature 434, 697. Elder, J.F. & Turner, B.J. (1995). Concerted evolution of repetitive DNA sequences in eukaryotes. The Quarterly Review of Biology 70 (2): 297-320. Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299. Godfray, H.C.J. (2002). Challenges for taxonomy. Nature 417: 17-19. Goertzen, L.R., Cannone, J.J., Gutell, R.R. & Jansen, R.K. (2003). ITS secondary structure derived from comparative analysis: implications for sequence alignment and phylogeny of the Asteraceae. Molecular Phylogenetics and Evolution 29: 216-234. Gregory, T.R. (2005). DNA barcoding does not compete with taxonomy. Nature 434, 1067–1067. Hajibabaei, M., Singer, G.A.C., Hebert, P.D.N. & Hickey, D.A. (2007). DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics 23: 167–172. Hebert, P.D.N., Cywinska, A., Ball, S.L., deWaard, J.R. (2003a). Biological identifications through DNA barcodes. Philosophical transactions of the Royal Society of London 270: 313–321. Hebert, P.D.N. & Gregory, T.R. (2005). The promise of DNA barcoding for taxonomy. Systematic Biology 54: 852–859. Hebert, P.D.N., Ratnasingham, S. & deWaard, J.R. (2003b). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related specie. Philosophical transactions of the Royal Society of London 270: S96-99. Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H. & Hallwachs, W. (2004a). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101: 14812-14817. Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S., & Francis, C.M. (2004b). Identification of birds through DNA barcodes. PLoS Biology 2: 1657-1663. Hillis, D.M. & Dixon, M.T. (1991). Ribosomal DNA molecular evolution and phylogenetic inference. The Quarterly Review of Biology 66, 410 - 453 Hung, G.C., Chilton, N.B., Beveridge, I. & Gasser, R.B. (1999). Secondary structure model for the ITS-2 precursor rRNA of strongyloid nematodes of equids: implications for phylogenetic inference. International Journal for Parasitology 29: 1949-1964. Hurst, L.D. (1992). Intragenomic conflict as an evolutionary force. Philosophical transactions of the Royal Society of London 248, 135-140. Kenchington, E., Bird, C.J., Osbonr, J., & Reith, M. (2002). Novel repeat elements in the nuclear ribosomal RNA operon of the lfat oysters Ostrea edulis C. Linnaeus, 1785 and O. angasi Sowerby, 1871. The Journal of Shellfish Research 21: 697-705 Kerr, C.R.K., Stoeckle, Y.M., Dove, J.C., Weigt, A.L., Francis, M.C., & Hebert, D.N.P. (2007). Comprehensive DNA barcode coverage of North American birds. Molecular Ecology 7: 535-543. Lee, S.B. & Taylor, J.W. (1992). Phylogeny of five fungus-like protocistan Phytophthora species, inferred from the internal transcribed spacers of ribosomal DNA. Molecular Biology and Evolution 9: 636-653 Lin, L.Y., Cheng, I.P., Tzeng, C.S., Huang, P.C. (1990) Maternal transmission of mitochondrial DNA in ducks. Biochemical and Biophysical Research Communications 168: 188-192 Mallet, J. & Willmot, K. (2003). Taxonomy: renaissance or Tower of Babel? Trends in Ecology and Evolution 18: 57–59. Meier, R., Kwong, S., Vaidya, G. & Ng, P.K.L. (2006). DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Systematic Biology 55: 715 728. Moritz, C. & Cicero, C. (2004). DNA barcoding: promise and pitfalls. PloS Biology 2: 1529–1531. Mukabayire, O., Boccolini, D., Lochouarn, L., Fontenille, D. & Besansky, N.J. (1999). Mitochondrial and ribosomal internal transcribed spacer (ITS-2) diversity of the African malaria vector Anopheles funestus. Molecular Ecology 8: 289-297. Ng, P.K.L., 1988. The Freshwater Crabs of Peninsular Malaysia and Singapore. Shing Lee Publishers, Singapore. Oliverio, M., Barco, A., Modica, M.V., Richter, A. & Mariottini, P. (2009). Ecological barcoding of corallivory by second internal transcribed spacer sequences: hosts of coralliophiline gastropods detected by the cnidarian DNA in their stomach. Molecular Ecology Resources 9: 94-103. Paquin, P. & Hedin, M. (2004). The power and perils of ‘molecular taxonomy’: a case study of eyeless and endangered Cicurina (Araneae: Dictynidae) from Texas caves. Molecular Ecology 13: 3239-3255. Parkin E.J. & Butlin. R.K. (2004). Within- and between-individual sequence variation among ITS-1 copies in the meadow grasshopper Chorthippus parallelus indicates frequent intrachromosomal gene conversion. Molecular Biology and Evolution 21: 1595-1601. Proudlove, G. & Wood, P.J. (2003). The blind leading the blind: cryptic subterranean species and DNA taxonomy. Trends in Ecology and Evolution 18: 272-273. Reeder, R.H, (1990). Ribosomal RNA synthesis in the nucleolus. Trends in Genetics 6: 390-395. Roderick, G.K. (1996). Geographic structure of insect populations: gene flow, phylogeography, and their uses. Annual Review of Entomology 41, 325-352. Rossello, J.A., Lazaro, A., Cosin, R. & Molins, A. (2007). A phylogeographic split in Buxus balearica (Buxaceae) as evidenced by nuclear ribosomal markers: when ITS paralogues are welcome. Journal of Molecular Evolution 64: 143-157. Schindel, D.E. & Miller, S.E. (2005). DNA barcoding a useful tool for taxonomists. Nature 435, 17. Schlotterer, C., Hauser, M.T., von Haeseler, A. & Tautz, D. (1994). Comparative evolutionary analysis of rDNA ITS regions in Drosophila. Molecular Biology and Evolution 11: 513-522. Schmidt, G.J. & Schilling, E.E. (2000). Phylogeny and biogeography of Eupatorium (Asteraceae: Eupatorieae) based on nuclear ITS sequence data. American Journal of Botany 87: 716-726. Shih, H.T., Fang, S.H. & Ng, P.K.L. (2007a). Phylogeny of the freshwater crabs genus Somanniathelphusa Bott (Decapoda: Parathelphusidae) from Taiwan and the coastal regions of China, with notes on their biogeography. Invertebrate Systematics 21: 29–37. Shih, H.T., Hung, H.C., Schubart, C.D., Chen, C.A. & Chang, H.W. (2006). Intraspecific genetic diversity of the endemic freshwater crab Candidiopotamon rathbunae (Decapoda, Brachyura, Potamidae) reflects five millon years of the geological history of Taiwan. Journal of Biogeography 33: 980-989. Shih, H.T., & Ng, P.K.L. (2011). Diversity and biogeography of freshwater crabs (Crustacea: Brachyura: Potamidae, Gecarcinucidae) from East Asia. Systematics and Biodiversity 9: 1-16. Shih, H.T., Ng, P.K.L. & Chang, H.W. (2004). Systematics of the genus Geothelphusa (Crustacea, Decapoda, Brachyura, Potamidae) from southern Taiwan: a molecular appraisal. Zoological Science 43: 561-470. Shih, H.T., Ng, P.K.L., Naruse, T., Shokita, S. & Liu, M.Y. (2011). Pleistocene speciation of freshwater crabs (Crustacea: Potamidae: Geothelphusa) from northern Taiwan and southern Ryukyus, as revealed by phylogenetic relationships. Zoologischer Anzeiger 250: 457-471. Shih, H.T., Ng, P.K.L., Schubart, C.D. & Chang, H.W. (2007). Phylogeny and phylogeography of the genus Geothelphusa (Crustacea: Decapoda, Brachyura, Potamidae) in southwestern Taiwan based on two mitochondrial genes. Zoological Science 24: 57-66. Shih, H.T. & Shy, J.Y., 2009. Geothelphusa makatao sp. nov. (Crustacea: Brachyura: Potamidae), a new freshwater crab from an uplifted Pleistocene reef in Taiwan. Zootaxa 2106: 51-60. Shih, H.T., Shy, J.Y. & Lee, J.H., 2010. A new freshwater crab of the genus Geothelphusa (Brachyura, Potamidae) from southwestern Taiwan. Crustaceana Monographs 14: 661-675. Shih, H.T., Shy, J.Y., Naruse, T.D., Yeo, C.J. & Ng, P.K.L. (2011). Introduction of an Indochinese freshwater crab Sayamia germaini (Crustacea: Brachyura: Gecarcinucidae) to Taiwan: morphological and molecular evidence. The Raffles Bulletin of Zoology 59: 83-90. Shih, H.T., Zhou, X.M., Chen, G.X., Chien, I.C. & Ng, P.K.L. (2011). Recent vicariant and dispersal events affecting the phylogeny and biogeography of East Asian freshwater crab genus Nanhaipotamon (Decapoda: Potamidae). Molecular Phylogenetics and Evolution 58: 427-438. Sites, J.W. Jr. & Marshall, J.C. (2004). Operational criteria for delimiting species. Annual Review of Ecology, Evolution, and Systematics 35: 199-227. Smith, M.A., Fisher, B.L. & Hebert, P.D.N. (2005). DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 1825–1834. Smith, M.A., Wood, D.M., Janzen, D.H., Hallwachs, W. & Hebert, P.D.N. (2007). DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. Proceedings of the National Academy of Sciences of the United States of America 104: 4967–4972. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., and Kumar S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28: 2731-2739. Tang, B.P., Zhou, K.Y., Song, D.X., Yang, G.A. & Dai, A.Y. (2003). Molecular systematic of the Asian mitten crabs, genus Eriocheir (Crustacea: Brachyura). Molecular Phylogenetics and Evolution 29: 309-316. Tang, J.M., Toe, L.A., Back, C. & Unnasch, T.R. (1996). Intra-specific heterogeneity of the rDNA internal transcribed spacer in the Simulium damnosum (Diptera: Simuliidae) complex. Molecular Biology and Evolution 13: 244-252. Tautz, D., Archtander, P. Minelli, A., Thomas, R.H. & Vogler, A.P. (2002). DNA points the way ahead in taxonomy. Nature 418: 479. Tautz, D., Arctander, P., Minelli, A., Thomas, R.H. & Vogler, A.P. (2003). A plea for DNA taxonomy. Trends in Ecology and Evolution 18: 70-74. Tavares, E.S. & Baker, A.J. (2008). Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds. BMC Evolutionary Biology 8: 81. Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673-4680. Verheyen, E., Salzburger, W., Snoeks, J. & Meyer, A. (2003). Origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science 300: 325-329 Vesgueiro, F.T., Demari-Silva, B., Malafronte, R.D.S., Sallum, M.A.M. & Marrelli, M.T. (2011). Intragenomic variation in the second internal transcribed spacer of the ribosomal DNA of species of the genera Culex and Lutzia (Diptera: Culicidae). Memorias do Instituto Oswaldo Cruz 106: 1-8. Vogler, A.P. & Monaghan, M.T. (2007). Recent advances in DNA taxonomy. Journal of Zoological Systematics and Evolutionary Research 45: 1-10. Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R. & Hebert, P.D.N. (2005). DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360: 1847-1857 Weekers, P.H.H., De Jonckheere, J.F. & Dumont, H.J. (2001). Phylogenetic relationships inferred from ribosomal ITS sequences and biogeographic patterns in representatives of the genus Calopteryx (Insecta: Odonata) of the West Mediterranean and adjacent West European zone. Molecular Phylogenetics and Evolution 20: 89-99. Welnicz, W., Grohme, M.A., Kaczmarek, L., Schill, R.O. & Frohme, M. (2011). ITS-2 and 18S rRNA data from Macrobiotus polonicus and Milnesium tardigradum (Eutardigrada, Tardigrada). Journal of Zoological Systematics and Evolutionary Research 49: 34-39. Wei, N.W.V., Wallace, C.C., Dai, C.F., Pillay, K.R.M. & Chen, C.A. (2006). Analyses of the ribosomal internal transcribed spacers (ITS) and the 5.8S gene indicate that extremely high rDNA heterogeneity is a unique feature in the scleractinian coral genus Acropora (Scleractinia; Acroporidae). Zoological Studies 45: 404-418. Wheeler, Q.D., Raven, P.H. & Wilson, E.O. (2004). Taxonomy: impediment or expedient? Science 303: 285 Winston, J. E., 1999. Describing Species. Columbia University Press, New York. Yeo, D.C.J., Ng, P.K.L., Cumberlidge, N., Magalhaes, C., Daniels, S.R., Campos, M.R. (2008). Global diversity of crabs (Crustacea: Decapoda: Brachyura) in freshwater. Hydrobiologia 595: 275-286. Yeo, D.C.J., Shih, H.T., Meier, R. & Ng, P.K.L. (2007). Phylogeny and biogeography of the freshwater crab genus Johora (Crustacea: Brachyura: Potamidae) from the Malay Peninsula, and the origins of its insular fauna. Zoologica Scripta 36: 255-269. Zardoya, R., Vollmer, D.M., Craddock, C., Streelman, J.T., Karl, S. & Meyer, A. (1996). Evolutionary conservation of microsatellite flanking regions and their use resolving the phylogeny of cichlid fish (Pisces: Perciformes). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 263: 1589-1598.en_US
dc.description.abstract澤蟹屬 (Geothelphusa) 淡水蟹在形態特徵上不易分辨, 多依賴雄性交接器, 但其在種間或種內僅有微小之差異; 前人研究顯示, 大部分的種類可以藉由遺傳的證據獲得支持。然而, 台灣西南部的黃綠澤蟹複合群 (Geothelphusa olea complex) 和台灣東南部大武澤蟹複合群 (G. tawu complex) 之粒線體 COI 、16S rRNA 基因並無法支持群內種類的辨識。本研究嘗試以粒線體基因 COI、核基因 ITS-1 和 ITS-2 (internal transcribed spacer 1 and 2) 做為分子標記, 探討粒線體與核基因對於澤蟹物種之辨識程度。結果顯示, 在 COI 樹中, 台灣的 Geothelphusa 可分成兩個部分, 一是 G. miyazakii complex, 且三個基因樹皆支持 G. miyazakii 和南琉球的 G. marginata 和 G. fulva 各自成為單系群; 二是台灣島內的其餘 Geothelphusa 物種, 其中 COI 樹能區分為西部群與東部群, ITS-1 樹和 ITS-2 樹則無法分群。G. olea complex 在 COI 樹中, 為一分不開之單系群; ITS-1 樹和 ITS-2 樹結果則顯示 G. caesia 是單系的, 支持其為一有效種。G. tawu complex 在 COI 樹中為一有較高支持度的單系群, 可能為單一物種, 但 ITS-1 樹支持度較低。G. eucrinodonta complex 方面, 在 COI 樹上, G. eucrinodonta、桃竹苗之 G. aff. olea和 G. yangmingshan 各自為單系群, 但 ITS-1 樹不支持 COI 樹的分群, ITS-1 樹上 G. eucrinodonta 與 G. siasiat 則成為一個較大的單系群。G. pingtung complex 方面, COI 樹的結果支持 G. makotao 和 G. pingtung 分別為單系群, 但 ITS-1 樹結果顯示 G. makotao 無法從 G. pingtung complex 群中分離出來。部分核基因與粒線體基因結果之不一致, 可能是 ITS 的雙系遺傳 (biparental inheritance) 或 COI 的母系遺傳所造成的。本研究結果顯示利用 ITS 基因將有助於釐清部分台灣澤蟹之物種有效性。zh_TW
dc.description.abstractThe freshwater crabs of the genus Geothelphusa are not easily separated morphologically, and almost are relied on the shape of male gonopod 1 with only small difference within and between species. Previous studies showed that most species can be supported by genetic evidence. However, species within the Geothelphusa olea complex from southwestern Taiwan and the G. tawu complex from southeastern Taiwan can not separated by the mitochondrial COI of 16S rRNA genes. This study attempts to understand the species identification for Taiwanese Geothelphusa by the mitochondrial COI, and nuclear ITS-1 and ITS-2 (internal transcribed spacer 1 and 2). The results show that, according to the COI tree, the Taiwanese Geothelphusa species can be divided into two clades. One is the G. miyazakii complex. Three gene trees support the Taiwanese G. miyazakii, and the Ryukyuan G. marginata and G. fulva as three clades. The other is the remaining Geothelphusa species in Taiwan, which can be divided into the western and eastern clades based on COI tree, although the ITS-1 and ITS-2 trees do not have this tendency. In the COI tree, the G. olea complex is an unsolved clade, but ITS-1 and ITS-2 analyses show G. caesia is monophyletic and support it is a valid species. G. tawu complex forms a clade with higher support in COI tree suggesting it is a single species; although the support is weak in the ITS-1 tree. For the G. eucrinodonta complex, G. eucrinodonta, G. aff. olea from Taoyuan, Hsinchu and Miaoli, and G. yangmingshan form three clades in the COI tree. Although ITS-1 tree does not support the results in COI tree, it shows G. eucrinodonta and G. siasiat form a large clades. In the G. pingtung complex, G. makotao and G. pingtung are two separate clades in COI tree, but both form an unsolved clade in ITS-1 tree. Some inconsistencies between nuclear mitochondrial markers are suggested to be caused by the effect from biparental or maternal inheritance, for ITS or COI genes, respectively. This study supports the ITS gene can help clarify the validity of some Taiwanese Geothelphusa species.en_US
dc.description.tableofcontents摘要 i Abstract ii 目錄 iii 表目錄 iv 圖目錄 vi 附錄 viii 壹、前言 1 一、基因條碼 (DNA barcode) 1 二、ITS 基因文獻回顧 2 三、淡水蟹研究概述 3 貳、材料與方法 5 一、標本收集 5 二、分子生物學方法 5 參、結果 8 一、粒線體基因 COI 基因結果 8 二、核基因 ITS 基因片段結果 8 三、粒線體基因 COI 基因之親緣樹 8 四、核基因 ITS 基因片段之親緣樹 9 五、COI、ITS-1、ITS-2 三基因親緣樹比較 11 六、基因歧異度 12 肆、討論 13 一、台灣地區 Geothelphusa 之物種有效性 13 二、DNA barcode 16 三、ITS基因 17 伍、結論 19 陸、參考文獻 20 表 30 圖 59 附錄 80zh_TW
dc.subjectDNA barcodeen_US
dc.title以 ITS 基因探討台灣澤蟹屬之分子系統學zh_TW
dc.titleMolecular systematic of the Taiwanese Geothelphusa based on ITS markersen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.openairetypeThesis and Dissertation-
Appears in Collections:生命科學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.