Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2023
標題: 應用電腦視覺於CMOS-MEMS微結構後製程檢測
Post-Process Inspection of CMOS-MEMS Microstructures Using Computer Vision Technique
作者: 李國弘
Lee, Kuo-Hung
關鍵字: computer vision;電腦視覺;CMOS-MEMS;post-process;inspection;CMOS-MEMS;後製程;檢測
出版社: 機械工程學系所
引用: [1] H. Wicht and J. Bouchaud, “NEXUS market analysis for MEMS and microsystems III 2005-2009,” MST News 2005 No. 05, pp. 33-34, 2005. [2] 國科會精儀中心,微機電系統技術與應用,2003。 [3] H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Hagleitner, “CMOS MEMS-present and future,” The 15th IEEE Intl. Conf. on Micro Electro Mechanical Systems, pp. 459-466, 2002. [4] 李智、王向軍,微機電系統測試技術及方法,光學精密工程,vol. 11, pp. 37-44, 2003。 [5] D.M. Freeman, and C.Q. Davis, “Using video microscopy to characterize Micromechanical Systems,” Broadband Optical Networks and Technologies, IEEE/LEOS Summer Topical Meetings, pp. II9-II10, 1998. [6] G.F. LaVigne, and S.L. Miller, “A performance analysis system for MEMS using automated imaging methods,” Proc. International Test Conference, pp. 442-447, 1998. [7] D.J. Burns, and H.F. Helbig, “A system for automatic electrical and optical characterization of Microelectromechanical devices,” J. Microelectromech. Syst., vol. 8, pp. 473-482, 1999. [8] N.F. Smith, W.P. Eaton, D.M. Tanner, and J.J. Allen, “Development of characterization tools for reliability testing of MicroElectroMechanical system actuators,” MEMS Reliability for Critical and Space Applications, Proc. SPIE 3880, pp. 156-164, 1999. [9] G.C. Brown, and R.J. Pryputniewicz, “New test methodology for static and dynamic shape measurements of microelectromechanical systems,” Optical Engineering, vol. 39, pp. 127-136, 2000. [10] S. Bosch-Charpenay, J. Xu, J. Haigis, P. A. Rosenthal, P. R. Solomon, and J. M. Bustillo, “Real-time etch-depth measurements of MEMS devices,” J. Microelectromech. Syst., vol. 11, pp. 111-117, 2002. [11] C. O''Mahony, M. Hill, M. Brunet, R. Duane, and A. Mathewson, “Characterization of micromechanical structures using white-light interferometry,” Meas. Sci. Technol., vol. 14, pp. 1807-1814, 2003. [12] G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol., vol. 15, pp. 529-539, 2004. [13] O. Burak Ozdoganlar, B.D. Hansche, and T.G. Carne, “Experimental modal analysis for microelectromechanical systems,” Experimental Mechanics, vol. 45, pp. 498-506, 2005. [14] J.A. Conway, J.V. Osborn, and J.D. Fowler, “Stroboscopic imaging interferometer for MEMS performance measurement,” J. Microelectromech. Syst., vol. 16, pp. 668-674, 2007. [15] 李國誌,應用數位影像關係法於微試件變形之量測,碩士論文,國立成功大學機械工程學系,2002。 [16] 蕭裕昌,應用影像量測技術於微小元件之外型尺寸量測之研究,碩士論文,淡江大學航空太空工程學系,2004。 [17] R.C. Gonzalez and R.E. Woods, Digital Image Processing, 3rd ed., Prentice Hall, 2008. [18] 鍾國亮,影像處理與電腦視覺,三版,台灣東華書局,2006。 [19] 吳昌崙、張景學,半導體製造技術,二版,新文京開發,2003。 [20] C.L. Dai, J.H. Chiou, and M. S.C. Lu, “A maskless post-CMOS bulk micromachining process and its application,” J. Micromech. Microeng., vol. 15, pp. 2366-2371, 2005. [21] C.L. Dai, and M.C. Liu, “A wet etching post-process for CMOS-MEMS RF switches,” Proc. of the 2nd IEEE Intl. Conf. on Nano/Micro Engineered and Molecular Systems, pp. 968-971, 2007. [22] 莊達人,VLSI製造技術,五版,高立圖書,2002。 [23] K.R. Williams and R.S. Muller, “Etch rates for micromachining processing,” J. Microelectromech. Syst., vol. 5, pp. 256-269, 1996. [24] K.R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing-part II,” J. Microelectromech. Syst., vol. 12, pp. 761-778, 2003. [25] 林士傑,應用於射頻之微機械式可變電容,碩士論文,國立中興大學機械工程學系,2007。 [26] E.N. Malamas, E.G.M. Petrakis, M. Zervakis, L. Petit, and J.-D. Legat, “A survey on industrial vision systems, applications and tools,” Image and Vision Computing, vol. 21, pp. 171-188, 2003. [27] B. Jahne, Practical Handbook on Image Processing for Scientific and Technical Applications, CRC Press, 2004. [28] N. Otsu, “A threshold selection method from gray level histograms,” IEEE Trans. on Systems, Man, and Cybernetics, vol. SMC-9, pp. 62-66, 1979. [29] H.-F. Ng, “Automatic thresholding for defect detection,” Pattern Recognition Letters, vol. 27, pp. 1644-1649, 2006. [30] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 8, pp. 679-698, 1986. [31] J.R. Parker, Algorithms for Image Processing and Computer Vision, Wiley, 1997. [32] F.K.H. Quek, “An algorithm for the rapid computation of boundaries of run-length encoded regions,” Pattern Recognition, vol. 33, pp. 1637-1649, 2000. [33] S.C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists, 2nd ed., McGraw-Hill, 2008. [34] R.O. Duda, and P.E. Hart, “Use of the Hough Transformation to detect lines and curves in pictures,” Graphics and Image Processing, Comm. of ACM 15, pp. 11-15, 1972. [35] S.M. Thomas, and Y.T. Chan, “A simple approach for the estimation of circular arc center and its radius,” Computer Vision, Graphics and Image Processing, vol. 45, pp. 362-370, 1989.
摘要: 
考量製程相容性微機電元件的製作,常使用CMOS-MEMS整合後製程的方式,當微結構完成犧牲層蝕刻後,藉由光學顯微鏡結合電腦視覺技術,檢測其外型尺寸,一方面可以得到微元件的結構幾何尺寸,另一方面在後製程完成時,可在微元件進行電性量測之前,先進行初步的瑕疵檢測,及早過濾不良品。
本研究主要是以光學顯微鏡取像,應用電腦視覺技術針對CMOS-MEMS元件後製程蝕刻,進行微結構的外觀尺寸與相關特徵量測,本研究所發展的微結構電腦視覺量測程式,主要包含數位影像前處理及特徵辨識與量測等步驟,能針對微機電元件結構常用的梳狀結構、矩形結構及圓形結構進行量測,量測的特徵有結構線寬、結構線距、矩形結構面積與形心、圓形結構面積與形心。本研究並將檢測系統發展成即時檢測功能,進一步應用到後製程的蝕刻即時監測,經由量測元件在蝕刻時的水平方向尺寸變化速率,而得知結構的側向蝕刻速率。

CMOS-MEMS technique uses the commercial CMOS (complementary metal oxide semiconductor) process to fabricate MEMS (micro-electro- mechanical system) devices. Most of CMOS-MEMS devices need the post-process to etch the sacrificial layers, and to release the suspended structures. The post-process is the key technique for the fabrication of CMOS-MEMS devices. Using the computer vision inspection, the feature dimensions and defects of micro devices can be inspected before the verification of electrical properties.
In this study, an inspection process for the post-process is developed. The inspection process uses the computer vision technique to monitor the etching variation of microstructures during the post-process, and to measure the etched dimensions of the microstructure. The computer vision technique employs an optical microscopy and a measurement program edited by C++ software to detect the microstructure features, dimensions (included linear width, linear distance, area of structure, center of circle and radius) and changes in the post-process. The etch rate of the microstructure can be found by monitoring the dimension changes in etching.
URI: http://hdl.handle.net/11455/2023
其他識別: U0005-1201200909591800
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.