Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20230
標題: 以合成生物學提升紫色不含硫光合細菌產氫及固碳能力之研究
Enhancement of Hydrogen Production and Carbon Fixation in Purple Nonsulfur Bacterium by Synthetic Biology
作者: 羅壽鎮
Lo, Shou-Chen
關鍵字: 紫色不含硫光合細菌;Rhodopseodomonas;梭狀芽胞桿菌;產氫酶乙醛酸;光合自營;Clostridium;hydrogenase;glyoxylate;photosynthesis
出版社: 生命科學系所
引用: Ackrell, B.A.C., Asato, R.N., & Mower, H.F. (1966). Multiple forms of bacterial hydrogenases. J. Bacteriol., 92(4), 828-838. Assa, P., Ozkan, M., & Ozcengiz, G. (2005). Thermostability and regulation of Clostridium thermocellum L-lactate dehydrogenase expressed in Escherichia coli. Annals of Microbiology, 55(3), 193-197. Badger, M.R., & Price, G.D. (2003). CO2 concentration mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany, 54(383), 609-622. Bar-Even, A., Noor, E., Lewis, N.E., & Milo, R. (2010). Design and analysis of synthetic carbon fixation pathways. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8889-8894. doi: 10.1073/pnas.0907176107 Barbosa, M.J., Rocha, J.M.S., Tramper, J., & Wijffels, R.H. (2001). Acetate as a carbon source for hydrogen production by photosynthetic bacteria. Journal of Biotechnology, 85(1), 25-33. doi: 10.1016/s0168-1656(00)00368-0 Bassham, J., Benson, A., & Calvin, M. (1950). The path of carbon in photosynthesis. Journal of Biological Chemistry, 185(2), 781-787. doi: 10.1038/scientificamerican0662-88 Benemann, J.R. (1998). Feasibility analysis of photobiological hydrogen production. International Journal of Hydrogen Energy, 22(10-11), 979-987. Blanc, G., Duncan, G., Agarkova, I., Borodovsky, M., Gurnon, J., Kuo, A., . . . Van Etten, J.L. (2010). The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell, 22(9), 2943-2955. doi: 10.1105/tpc.110.076406 Blumenthal, H.J., & Fish, D.C. (1963). Bacterial conversion of D-glucarate to glycerate and pyruvate. Biochemical and Biophysical Research Communications, 11, 239-243. Cammack, R. (1999). Bioinorganic chemistry: hydrogenase sophistication. Nature, 397(6716), 214-215. Carcassi, M.N., & Fineschi, F. (2005). Deflagrations of H2-air and CH4-air lean mixtures in a vented multi-compartment environment. Energy, 30(8), 1439-1451. doi: 10.1016/j.energy.2004.02.012 Carlozzi, P., Pushparaj, B., Degl''Innocenti, A., & Capperucci, A. (2006). Growth characteristics of Rhodopseudomonas palustris cultured outdoors, in an underwater tubular photobioreactor, and investigation on photosynthetic efficiency. Applied Microbiology and Biotechnology, 73(4), 789-795. doi: 10.1007/s00253-006-0550-z Chang, Y.-Y., Wang, A.-Y., & Cronan, J.E., Jr. (1993). Molecular cloning, DNA sequencing, and biochemical analyses of Escherichia coli glyoxylate carboligase. The Journal of Biological Chemistry, 268(6), 3911-3919. Chen, C.-Y., Lee, C.-M., & Chang, J.-S. (2006). Feasibility study on bioreactor strategies for enhanced photohydrogen production from Rhodopseudomonas palustris WP3-5 using optical-fiber-assisted illumination systems. International Journal of Hydrogen Energy, 31(15), 2345-2355. doi: 10.1016/j.ijhydene.2006.03.007 Chen, C.Y., Lu, W.B., Liu, C.H., & Chang, J.S. (2008). Improved phototrophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates. Bioresource technology, 99(9), 3609-3616. doi: 10.1016/j.biortech.2007.07.037 Daday, A., Lambert, G.R., & Smith, G.D. (1979). Measurement in vivo of hydrogenase-catalysed hydrogen evolution in the presence of nitrogenase enzyme in cyanobacteria. Biochemical Journal, 177, 139-144. Das, D., & Veziroglu, T.N. (2001). Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26(1), 13-28. doi: 10.1016/s0360-3199(00)00058-6 DOE. (2008). Hydrogen safety, codes, and standards. In C. J. Cleveland (Ed.), Encyclopedia of Earth. Donohue, T.J., & Kaplan, S. (1991). Genetic techniques in Rhodospirillaceae. Methods Enzymol., 204, 459-485. Du, C., Zhou, J., Wang, J., Yan, B., Lu, H., & Hou, H. (2003). Construction of a genetically engineered microorganism for CO2 fixation using a Rhodopseudomonas/Escherichia coli shuttle vector. FEMS Microbiology Letters, 225(1), 69-73. doi: 10.1016/s0378-1097(03)00482-8 Durfee, T., Nelson, R., Baldwin, S., Plunkett, G., 3rd, Burland, V., Mau, B., . . . Blattner, F.R. (2008). The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. Journal of Bacteriology, 190(7), 2597-2606. doi: 10.1128/JB.01695-07 Eady, R.R. (1996). Structure-function relationships of alternative nitrogenases. Chemical Reviews, 96, 3013-3030. Egland, P.G., Gibson, J., & Harwood, C.S. (2001). Reductive, coenzyme A-mediated pathway for 3-chlorobenzoate degradation in the phototrophic bacterium Rhodopseudomonas palustris. Applied and Environmental Microbiology, 67(3), 1396-1399. doi: 10.1128/AEM.67.3.1396-1399.2001 Eisenhut, M., Ruth, W., Haimovich, M., Bauwe, H., Kaplan, A., & Hagemann, M. (2008). The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proceedings of the National Academy of Sciences of the United States of America, 105(44), 17199-17204. doi: 10.1073/pnas.0807043105 Eisenhut, M., Shira Kahlon, Dirk Hasse, Ralph Ewald, Judy Lieman-Hurwitz, Teruo Ogawa, . . . Martin Hagemann. (2006). The plant-like C2 glycolate cycle and the bacterial-like glycerate pathway cooperate in phosphoglycolate metabolism in cyanobacteria. Plant physiology, 142(1), 333-342. doi: 10.1104/pp.106.082982 Eley, J.H., Knobloch, K., & Han, T.-W. (1979). Effect of growth condition on enzymes of the citric acid cycle and the glyoxylate cycle in the photosynthetic bacterium Rhodopseudomonas palustris. Antonie van Leeuwenhoek, 45, 521-529. doi: 10.1007/BF00403652 Eprintsev, A.T., Klimova, M.A., Falaleeva, M.I., & Kompantseva, E.I. (2008). Regulation of carbon flows in the tricarboxylic acid cycle-glyoxylate bypass system in Rhodopseudomonas palustris under different growth conditions. Microbiology, 77(2), 132-136. doi: 10.1134/s0026261708020021 Erb, T.J., Berg, I.A., Brecht, V., Muller, M., Fuchs, G., & Alber, B.E. (2007). Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway. Proceedings of the National Academy of Sciences of the United States of America, 104(25), 10631-10636. doi: 10.1073/pnas.0702791104 Falcone, D.L., & Tabita, F.R. (1991). Expression of endogenous and foreign ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) genes in a RubisCO deletion mutant of Rhodobacter sphaeroides. Journal of Bacteriology, 173(6), 2099-2108. Fisher, K., & Newton, W.E. (2002). Nitrogen fixation-a general overview. In G. J. Leigh (Ed.), (pp. 1-34). Amsterdam, The Netherlands: Elsevier. Gaudy, A.F. (1980). Microbiology for environmental scientists and engineers. New York :: McGraw-Hill. Girbal, L., von Abendroth, G., Winkler, M., Benton, P.M., Meynial-Salles, I., Croux, C., . . . Soucaille, P. (2005). Homologous and heterologous overexpression in Clostridium acetobutylicum and characterization of purified clostridial and algal Fe-only hydrogenases with high specific activities. Applied and Environmental Microbiology, 71(5), 2777-2781. doi: 10.1128/AEM.71.5.2777-2781.2005 Gorwa, M., Croux, C., & Soucaille, P. (1996). Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824. Journal of Bacteriology, 178(9), 2668-2675. Gosse, J.L., Engel, B.J., Hui, J.C.-H., Harwood, C.S., & Flickinger, M.C. (2010). Progress toward a biomimetic leaf: 4,000 h of hydrogen production by coating-stabilized nongrowing photosynthetic Rhodopseudomonas palustris. Biotechnology Progress, 25, 907-918. doi: 10.1002/btpr.406 Gosse, J.L., Engel, B.J., Rey, F.E., Harwood, C.S., Scriven, L.E., & Flickinger, M.C. (2007). Hydrogen production by photoreactive nanoporous latex coatings of nongrowing Rhodopseudomonas palustris CGA009. Biotechnology Progress, 23(1), 124-130. Hallenbeck, P.C., & Benemann, J.R. (2002). Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy, 27, 1185-1193. doi: 10.1016/s0360-3199(02)00131-3 Hallenbeck, P.L., Lerchen, R., Hessler, P., & Kaplan, S. (1990). Roles of CfxA, CfxB, and external electron acceptors in regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase expression in Rhodobacter sphaeroides. Journal of Bacteriology, 172(4), 1736-1748. Hartmann, G.C., Santamaria, E., Fernandez, V.M., & Thauer, R.K. (1996). Studies on the catalytic mechanism of H2-forming methylenetetrahydromethanopterin dehydrogenase: para-ortho H2 conversion rates in H2O and D2O Journal of Biological Inorganic Chemistry, 1(5), 446-450. doi: 10.1007/s007750050077 Harwood, C.S., & Gibson, J. (1988). Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris. Applied and Environmental Microbiology, 54(3), 712-717. Hasegawa, A., Ogasawara, H., Kori, A., Teramoto, J., & Ishihama, A. (2008). The transcription regulator AllR senses both allantoin and glyoxylate and controls a set of genes for degradation and reutilization of purines. Microbiology, 154(Pt 11), 3366-3378. doi: 10.1099/mic.0.2008/020016-0 Heiniger, E.K., Oda, Y., Samanta, S.K., & Harwood, C.S. (2012). How post-translational modification of nitrogenase is circumvented in Rhodopseudomonas palustris strains that produce hydrogen gas constitutively. Applied and Environmental Microbiology, 78(4), 1023-1032. doi: 10.1128/AEM.07254-11 Hillmer, P., & Gest, H. (1977). H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J. Bacteriol., 129(2), 724-731. Hiromoto, T., Warkentin, E., Moll, J., Ermler, U., & Shima, S. (2009). The crystal structure of an [Fe]-hydrogenase-substrate complex reveals the framework for H2 activation. Angew Chem Int Ed Engl, 48(35), 6457-6460. doi: 10.1002/anie.200902695 Hoekema, S., Bijmans, M., Janssen, M., & Tramper, J. (2002). A pneumatically agitated flat-panel photobioreactor with gas re-circulation: anaerobic photoheterotrophic cultivation of a purple non-sulfur bacterium. International Journal of Hydrogen Energy, 27, 1331-1338. Howard, K.S., Hales, B.J., & Socolofsky, M.D. (1983). Nitrogenase fixation and ammonia switch-off in the photosynthetic bacterium Rhodopseudomonas viridis. Journal of Bacteriology, 155(1), 107-112. Hu, C.W., Chang, Y.L., Chen, S.J., Kuo-Huang, L.L., Liao, J.C., Huang, H.C., & Juan, H.F. (2011). Revealing the functions of the transketolase enzyme isoforms in Rhodopseudomonas palustris using a systems biology approach. PLoS One, 6(12), e28329. doi: 10.1371/journal.pone.0028329 Huang, J.J., Heiniger, E.K., McKinlay, J.B., & Harwood, C.S. (2010). Production of hydrogen gas from light and the inorganic electron donor thiosulfate by Rhodopseudomonas palustris. Applied and Environmental Microbiology, 76(23), 7717-7722. doi: 10.1128/aem.01143-10 Huergo, L.F., Pedrosa, F.O., Muller-Santos, M., Chubatsu, L.S., Monteiro, R.A., Merrick, M., & Souza, E.M. (2012). PII signal transduction proteins: pivotal players in post-translational control of nitrogenase activity. Microbiology, 158(Pt 1), 176-190. doi: 10.1099/mic.0.049783-0 Inui, M., Nakata, K., Roh, J.H., Zahn, K., & Yukawa, H. (1999). Molecular and functional characterization of the Rhodopseudomonas palustris no. 7 phosphoenolpyruvate carboxykinase gene. Journal of Bacteriology, 181(9), 2689-2696. Inui, M., Roh, J.H., Zahn, K., & Yukawa, H. (2000). Sequence analysis of the cryptic plasmid pMG101 from Rhodopseudomonas palustris and construction of stable cloning vectors. Applied and Environmental Microbiology, 66(1), 54-63. doi: 10.1128/AEM.66.1.54-63.2000 Kebeish, R., Niessen, M., Thiruveedhi, K., Bari, R., Hirsch, H.-J., Rosenkranz, R., . . . Peterhansel, C. (2007). Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nature Biotechnology, 25(5), 593-599. doi: 10.1038/nbt1299 Kim, E.-J., Kim, M.-S., & Lee, J.K. (2008). Hydrogen evolution under photoheterotrophic and dark fermentative conditions by recombinant Rhodobacter sphaeroides containing the genes for fermentative pyruvate metabolism of Rhodospirillum rubrum. International Journal of Hydrogen Energy, 33(19), 5131-5136. doi: 10.1016/j.ijhydene.2008.05.009 Kim, E., Lee, M., Kim, M., & Lee, J. (2008). Molecular hydrogen production by nitrogenase of Rhodobacter sphaeroides and by Fe-only hydrogenase of Rhodospirillum rubrum. International Journal of Hydrogen Energy, 33(5), 1516-1521. doi: 10.1016/j.ijhydene.2007.09.044 Kim, M., Baek, J., & Lee, J. (2006). Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant. International Journal of Hydrogen Energy, 31(1), 121-127. doi: 10.1016/j.ijhydene.2004.10.023 Knoop, H., Zilliges, Y., Lockau, W., & Steuer, R. (2010). The metabolic network of Synechocystis sp. PCC 6803: systemic properties of autotrophic growth. Plant physiology, 154(1), 410-422. doi: 10.1104/pp.110.157198 Kornberg, H.L., & Krebs, H.A. (1957). Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature, 179(4568), 988-991. Krahe, M., Antranikian, G., & Markl, H. (1996). Fermentation of extremophilic microorganisms. FEMS Microbiology Reviews, 18(2-3), 271-285. doi: 10.1016/0168-6445(96)00018-6 Laguna, R., Tabita, F.R., & Alber, B.E. (2010). Acetate-dependent photoheterotrophic growth and the differential requirement for the Calvin–Benson–Bassham reductive pentose phosphate cycle in Rhodobacter sphaeroides and Rhodopseudomonas palustris. Archives of Microbiology, 193(2), 151-154. doi: 10.1007/s00203-010-0652-y Lamed, R., & Zeikus, J.G. (1981). Thermostable, ammonium-activated malic enzyme of Clostridium thermocellum. Biochimica et Biophysica Acta - Enzymology, 660(2), 251-255. doi: 10.1016/0005-2744(81)90167-4 Lane, D.J., Pace, B., Olsen, G.J., Stahl, D.A., Sogin, M.L., & Pace, N.R. (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences of the United States of America, 82(20), 6955-6959. Larimer, F.W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., . . . Harwood, C.S. (2004). Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature Biotechnology, 22(1), 55-61. doi: 10.1038/nbt923 Lee, I.-H., Park, J., Kho, D., Kim, M.-S., & Lee, J. (2002). Reductive effect of H2 uptake and poly-β-hydroxybutyrate formation on nitrogenase-mediated H2 accumulation of Rhodobacter sphaeroides according to light intensity. Applied Microbiology and Biotechnology, 60(1-2), 147-153. doi: 10.1007/s00253-002-1097-2 Lin, C.-C. (2008). Biodegradation of pentachloroethane by expressing the Pseudomonas putida cytochrome P450cam in the purple non-sulfur phototrophic bacteria. (Master of Science), National Chung Hsing University, Taichung. Retrieved from http://nchuir.lib.nchu.edu.tw/ir/handle/309270000/44570 Ludwig, L.J., & Canvin, D.T. (1971). The Rate of Photorespiration during Photosynthesis and the Relationship of the Substrate of Light Respiration to the Products of Photosynthesis in Sunflower Leaves Plant Physiology, 48(6), 712-719. Mann, C.C. (1999). Genetic Engineers Aim to Soup Up Crop Photosynthesis. Science, 283(5400), 314-316. doi: 10.1126/science.283.5400.314 Martin, M.N., & Tabita, F.R. (1981). Differences in the kinetic properties of the carboxylase and oxygenase activities of ribulose bisphosphate carboxylase/oxygenase. FEBS Letters, 129(1), 39-43. McKinlay, J.B., & Harwood, C.S. (2010). Inaugural article: carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 107(26), 11669-11675. doi: 10.1073/pnas.1006175107 Miller, J.H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor Laboratory. Mura, G.M., Pedroni, P., Pratesi, C., Galli, G., Serbolisca, L., & Grandi, G. (1996). The [Ni-Fe] hydrogenase from the thermophilic bacterium Acetomicrobium flavidum. Microbiology, 142(4), 829-836. doi: 10.1099/00221287-142-4-829 Nandi, R., & Sengupta, S. (1998). Microbial production of hydrogen: an overview. Critical Reviews in Microbiology, 24(1), 61-84. doi: doi:10.1080/10408419891294181 Oda, Y., Samanta, S.K., Rey, F.E., Wu, L., Liu, X., Yan, T., . . . Harwood, C.S. (2005). Functional genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium Rhodopseudomonas palustris. Journal of Bacteriology, 187(22), 7784-7794. doi: 10.1128/jb.187.22.7784-7794.2005 Ozkan, M., Erhan, E., Terzi, O., Tan, I., & Ozoner, S.K. (2009). Thermostable amperometric lactate biosensor with Clostridium thermocellum L-LDH for the measurement of blood lactate. Talanta, 79(5), 1412-1417. doi: 10.1016/j.talanta.2009.06.012 Peters, J., Lanzilotta, W., Lemon, B., & Seefeldt, L. (1998). X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science, 282(5395), 1853-1858. Ren, N., Liu, B., Ding, J., Guo, W., Cao, G., & Xie, G. (2008). The effect of butyrate concentration on photo-hydrogen production from acetate by Rhodopseudomonas faecalis RLD-53. International Journal of Hydrogen Energy, 33(21), 5981-5985. doi: 10.1016/j.ijhydene.2008.07.020 Rey, F.E., Heiniger, E.K., & Harwood, C.S. (2007). Redirection of metabolism for biological hydrogen production. Applied and Environmental Microbiology, 73(5), 1665-1671. doi: 10.1128/aem.02565-06 Rey, F.E., Oda, Y., & Harwood, C.S. (2006). Regulation of uptake hydrogenase and effects of hydrogen utilization on gene expression in Rhodopseudomonas palustris. Journal of Bacteriology, 188(17), 6143-6152. doi: 10.1128/jb.00381-06 Richardson, D.J., King, G.F., Kelly, D.J., McEwan, A.G., Ferguson, S.J., & Jackson, J.B. (1988). The role of auxiliary oxidants in maintaining redox balance during phototrophic growth of Rhodobacter capsulatus on propionate or butyrate. Archives of Microbiology, 150(2), 131-137. doi: 10.1007/bf00425152 Riederer, A., Takasuka, T.E., Makino, S., Stevenson, D.M., Bukhman, Y.V., Elsen, N.L., & Fox, B.G. (2011). Global gene expression patterns in Clostridium thermocellum as determined by microarray analysis of chemostat cultures on cellulose or cellobiose. Applied and Environmental Microbiology, 77(4), 1243-1253. doi: 10.1128/AEM.02008-10 Robison, P.D., Martin, M.N., & Tabita, F.R. (1979). Differential effects of metal ions on Rhodospirillum rubrum ribulosebisphosphate carboxylase/oxygenase and stoichiometric incorporation of bicarbonate(1-) ion into a cobalt(III)-enzyme complex. Biochemistry, 18(21), 4453-4458. doi: 10.1021/bi00588a001 Romagnoli, S., & Tabita, F.R. (2006). A novel three-protein two-component system provides a regulatory twist on an established circuit to modulate expression of the cbbI region of Rhodopseudomonas palustris CGA010. Journal of Bacteriology, 188(8), 2780-2791. doi: 10.1128/jb.188.8.2780-2791.2006 Rosen, M.A., & Scott, D.S. (1998). Comparative efficiency assessments for a range of hydrogen production processes. International Journal of Hydrogen Energy, 23(8), 653-659. Sambrook, J., Fritsch, E., & Maniatis, T. (1989). Molecular cloning: a laboratory manual. 2nd. New York: Cold Spring Harbor Laboratory, 18, 58. Sasikala, C., & Ramana, C.V. (1997). Biodegradation and metabolism of unusual carbon compounds by anoxygenic phototrophic bacteria. Advances in Microbial Physiology, 39, 339-377. doi: 10.1016/s0065-2911(08)60020-x Sasikala, K., Ramana, C.V., & Raghuveer Rao, P. (1991). Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy, 16(9), 597-601. doi: 10.1016/0360-3199(91)90082-t Sato, Y., Nakaya, A., Shiraishi, K., Kawashima, S., Goto, S., & Kanehisa, M. (2001). SSDB: Sequence Similarity Database in KEGG. Genome Informatics, 12, 230-231. Shewry, P.R. (2001). Biochemistry & Molecular Biology of Plants. B.B. Buchanan, W. Gruissem and R.L. Jones (eds), 2000. Plant Growth Regulation, 35(1), 105-106. doi: 10.1023/a:1013849028622 Shima, S., Pilak, O., Vogt, S., Schick, M., Stagni, M.S., Meyer-Klaucke, W., . . . Ermler, U. (2008). The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science, 321(5888), 572-575. doi: 10.1126/science.1158978 Stephenson, M., & Stickland, L.H. (1931). Hydrogenase: a bacterial enzyme activating molecular hydrogen. Biochemical Journal, 25(1), 205-214. Sweet, W.J., & Burris, R.H. (1981). Inhibition of nitrogenase activity by NH4+ in Rhodospirillum rubrum. Journal of Bacteriology, 145(2), 824-831. Tabita, F.R. (1988). Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiological Reviews, 52(2), 155-189. Taipower. (2009). 2009 Taiwan Power Company Sustainability Report. Taipower. (2010). 2010 Taiwan Power Company Sustainability Report. Taipower. (2011). 2011 Taiwan Power Company Sustainability Report. Tian, X., Liao, Q., Liu, W., Wang, Y.Z., Zhu, X., Li, J., & Wang, H. (2009). Photo-hydrogen production rate of a PVA-boric acid gel granule containing immobilized photosynthetic bacteria cells. International Journal of Hydrogen Energy, 34(11), 4708-4717. doi: 10.1016/j.ijhydene.2009.03.042 Tian, X., Liao, Q., Zhu, X., Wang, Y., Zhang, P., Li, J., & Wang, H. (2010). Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production. Bioresource technology, 101(3), 977-983. doi: 10.1016/j.biortech.2009.09.007 Trost, P., Scagliarini, S., Valenti, V., & Pupillo, P. (1993). Activation of spinach chloroplast glyceraldehyde 3-phosphate dehydrogenase: effect of glycerate 1,3-bisphosphate. Planta, 190(3), 320-326. doi: 10.1007/BF00196960 US National Research Council, U.N.A.o.E. (2004). Committee on alternatives and strategies for future hydrogen production and useThe Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs (pp. 240). Washington, D.C.: National Academies Press. Volbeda, A., Charon, M.-H., Piras, C., Hatchikian, E.C., Frey, M., & Fontecilla-Camps, J.C. (1995). Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature, 373(6515), 580-587. Wang, C.-Y. (2012). Expression of cyanobacterial bicarbonate transporter for enhancement of carbon dioxide uptake in photosynthetic organisms. (Master of Science), National Chung Hsing University. Wang, Y.-Z., Liao, Q., Zhu, X., Tian, X., & Zhang, C. (2010). Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor. Bioresource technology, 101(11), 4034-4041. doi: 10.1016/j.biortech.2010.01.045 Weart, S. (2008). The carbon dioxide greenhouse effect. The Discovery of Global Warming. Wheeler, D., & Ummel, K. (2008). Calculating CARMA: global estimation of CO2 emissions from the power sector. Center for Global Development, Working Paper 145. Wood, B.E., & Ingram, L.O. (1992). Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Applied and Environment Microbiology, 58(7), 2103-2110. Yang, C.-F., & Lee, C.-M. (2011). Enhancement of photohydrogen production using phbC deficient mutant Rhodopseudomonas palustris strain M23. Bioresource technology, 102(9), 5418-5424. doi: 10.1016/j.biortech.2010.09.078 Yokoi, H., Ohkawara, T., Hirose, J., Hayashi, S., & Takasaki, Y. (1995). Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. Journal of Fermentation and Bioengineering, 80(6), 571-574. doi: 10.1016/0922-338x(96)87733-6 Zurrer, H., & Bachofen, R. (1979). Hydrogen production by the photosynthetic bacterium Rhodospirillum rubrum. Applied and Environmental Microbiology, 36(5), 789-793. Zhou, X.X., Pan, Y.J., Wang, Y.B., & Li, W.F. (2007). In vitro assessment of gastrointestinal viability of two photosynthetic bacteria, Rhodopseudomonas palustris and Rhodobacter sphaeroides. J Zhejiang Univ Sci B, 8(9), 686-692. doi: 10.1631/jzus.2007.B0686
摘要: 
氫氣是一種燃燒後不產生二氧化碳的無碳燃料,可廣泛使用於燃料電池,因此是一種理想的潔淨能源。而能源的製造最重要的就是降低生產成本,生物產氫就成了最理想的製氫方法。紫色不含硫光合細菌可在光照厭氧的環境下利用固氮酶產生純度高的氫氣,在生長過程中也可以光合自營固碳生長,作為生物觸酶產氫既能製造能源又不增加大氣中的二氧化碳,可說是一舉兩得。為了提高光合產氫發電效率,以太陽光為光及熱源來培養光合細菌是必須的。但以太陽光為熱源其培養槽的溫度控制就成了難題之一,光合細菌必得處於不穩定的溫度下。再者,以光合細菌行厭氧固碳產氫的效率會因其緩慢的生長而增加了成本。本論文著述了以異源表現嗜熱梭狀芽胞桿菌Clostridium thermocellum的產氫酶來增強並改善光合細菌在35~42°C下的產氫能力的實驗,此舉可將最適產氫溫度從35°C提升至40°C,並發現如此也可改善光合細菌在42°C下的生長。在提升固碳生長效率方面,則是以選殖大腸桿菌的乙醛酸代謝路徑作為一道額外的乙醛酸捷徑(glyoxylate shunt)來將由合成代謝循環中產生的乙醛酸導入卡爾文循環來增進光合細菌在自營生長下的碳源代謝效率,並發現不只可提高自營生長的速度近兩倍,也可提升其自營產氫的能力。

Hydrogen is a clean and ideal fuel, because it would emission no carbon dioxide while burning. The most important factor on producing energy is the production cost, and the cheapest way is through bioprocess. The purple non-sulfur bacterium is a kind of photobacteria; it could generate high quality hydrogen throughits nitrogenase, and also could grow by carbon fixation pathway under photoautotrophic metabolism. Generating hydrogen with purple non-sulfur bacterium will not only obtain hydrogen energy but also decrease the carbon dioxide emission into atmosphere. In this research, expression of [FeFe] hydrogeanse from Clostridium thermocellum in Rhodopseudomonas was done for improving hydrogen production at higher temperatures, and discovered that it increased the growth rate. The transgenic strain could produce more hydrogen than the vector control strain at 35 to 42�C. And the optimal hydrogen production temperature is shift to 40�C from 35�C. For increasing photoautotrophic growth rate, the glyoxylate metabolic pathway from Escherichia coli was introduced in the photobacterium as a glyoxylate shunt to guide glyoxylate that was produced in anabolism pathway into Calvin cycle for improvement of the carbon usage efficiency in photoautotrophic growth. It not only accelerates about 2 times photoautotrophic growth rate, but also increases photoautotrophic hydrogen productivity.
URI: http://hdl.handle.net/11455/20230
其他識別: U0005-0108201216134400
Appears in Collections:生命科學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-101-7094052317-1.pdf4.95 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.