Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20241
標題: 利用冷光誘導型基因轉殖小鼠探討乳鐵蛋白於高濃度氧所誘發的系統性發炎反應之抑制作用
Anti-Inflammatory Effects of Lactoferrin on Hyperoxia-Induced Systemic Inflammatory Responses using NF-κB/luciferase Transgenic Mice
作者: 張雯惠
Chang, Wen-Hui
關鍵字: 乳鐵蛋白;lactoferrin;高濃度氧;活體影像系統;NF-κB-Luciferase基因轉殖鼠;hyperoxia;IVIS;NF-κB-Luciferase transgenic mice
出版社: 生命科學系所
引用: Adlerova, L., Bartoskova, A. and Faldyna, M. (2008) Lactoferrin: a review Vet. Med. 53: 457-468. Aggarwal, B.B., Vijayalekshmi, R.V. and Sung, B. (2009) Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin. Cancer Res. 15: 425-430. Aisen, P. and Leibman, A. (1972) Lactoferrin and transferrin: a comparative study. Biochim. Biophys. Acta 257: 314-323. Arduini, A., Stern, A., Storto, S., Belfiglio, M., Mancinelli, G., Scurti, R. and Federici, G. (1989) Effect of oxidative stress on membrane phospholipid and protein organization in human erythrocytes. Arch Biochem. Biophys. 273: 112-120. Baldwin, A.S.Jr. (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu. Rev. Immunol. 14: 649-683. Barazzone, C., Horowitz, S., Donati, Y.R., Rodriguez, I. and Piguet P.F. (1998) Oxygen toxicity in mouse lung: pathways to cell death. Am. J. Respir. Cell Mol. Biol. 19: 573-581. Bast, A. (1989) [Oxygen radicals: rescue or threat?]. Tijdschr Kindergeneeskd 57: 171-177. Bellamy, W., Wakabayashi, H., Takase, M., Kawase, K., Shimamura, S. and Tomita, M. (1993) Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Med. Microbiol. Immunol. 182: 97-105. Benaron, D.A. and Stevenson, D.K. (1993) Optical time-of-flight and absorbance imaging of biologic media. Science 259: 1463-1466. Bernard, G.R., Artigas, A., Brigham, K.L., Carlet, J., Falke, K., Hudson, L., Lamy, M., Legall, J.R., Morris, A. and Spragg, R. (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am. J. Respir. Crit. Care Med. 149: 818-824. Bhandari, V. (2008) Molecular mechanisms of hyperoxia-induced acute lung injury. Front. Biosci. 13: 6653-6661. Bhandari, V., Choo-Wing, R., Lee, C.G., Zhu, Z., Nedrelow, J.H., Chupp, G.L., Zhang, X., Matthay, M.A., Ware, L.B., Homer, R.J., Lee, P.J., Geick, A., de Fougerolles, A.R. and Elias, J.A. (2006) Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat. Med. 12: 1286-1293. Blais, A., Malet, A., Mikogami, T., Martin-Rouas, C. and Tome, D. (2009) Oral bovine lactoferrin improves bone status of ovariectomized mice. Am. J. Physiol. Endocrinol. Metab. 296: E1281-1288. Blum, J.S., Temenoff, J.S., Park, H., Jansen, J.A., Mikos, A.G. and Barry, M.A. (2004) Development and characterization of enhanced green fluorescent protein and luciferase expressing cell line for non-destructive evaluation of tissue engineering constructs. Biomaterials 25: 5809-5819. Buckley, S., Barsky, L., Driscoll, B., Weinberg, K., Anderson, K.D. and Warburton, D. (1998) Apoptosis and DNA damage in type 2 alveolar epithelial cells cultured from hyperoxic rats. Am. J. Physiol. 274: L714-720. Chen, H.L., Wang, L.C., Chang, C.H., Yen, C.C., Cheng, W.T., Wu, S.C., Hung, C.M., Kuo, M.F. and Chen, C.M. (2008) Recombinant porcine lactoferrin expressed in the milk of transgenic mice protects neonatal mice from a lethal challenge with enterovirus type 71. Vaccine 26: 891-898. Chien, C.C., King, L.S. and Rabb, H. (2004) Mechanisms underlying combined acute renal failure and acute lung injury in the intensive care unit. Contrib. Nephrol. 144: 53-62. Coussens, L.M. and Werb, Z. (2002) Inflammation and cancer. Nature 420: 860-867. Crapo, J.D., Barry, B.E., Foscue, H.A. and Shelburne, J. (1980) Structural and biochemical changes in rat lungs occurring during exposures to lethal and adaptive doses of oxygen. Am. Rev. Respir. Dis. 122: 123-143. Crouch, S.P., Slater, K.J. and Fletcher, J. (1992) Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin. Blood 80: 235-240. Davies, S.J., Smith, S.J., Lim, K.C., Zhang, H., Purchio, A.F., McKerrow, J.H. and West, D.B. (2005) In vivo imaging of tissue eosinophilia and eosinopoietic responses to schistosome worms and eggs. Int. J. Parasitol. 35: 851-859. Doi, K., Ishizu, T., Fujita, T. and Noiri, E. (2011) Lung injury following acute kidney injury: kidney-lung crosstalk. Clin. Exp. Nephrol. 15: 464-470. Durackova, Z. (2010) Some current insights into oxidative stress. Physiol. Res. 59: 459-469. Federico, A., Morgillo, F., Tuccillo, C., Ciardiello, F. and Loguercio, C. (2007) Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer 121: 2381-2386. Fisher, A.B. and Beers, M.F. (2008) Hyperoxia and acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 295: L1066-1067. Freeman, B.A. and Crapo, J.D. (1982) Biology of disease: free radicals and tissue injury. Lab. Invest. 47: 412-426. Fridovich, I. (1978) The biology of oxygen radicals. Science 201: 875-880. Gifford, J.L., Hunter, H.N. and Vogel, H.J. (2005) Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell. Mol. Life Sci. 62: 2588-2598. Gordon, W.G., Groves, M.L. and Basch, J.J. (1963) Bovine milk "red protein": amino acid composition and comparison with blood transferrin. Biochemistry 2: 817-820. Hancock, J.T., Desikan, R. and Neill, S.J. (2001) Role of reactive oxygen species in cell signalling pathways. Biochem. Soc. Trans. 29: 345-350. Harman, D. (1992) Role of free radicals in aging and disease. Ann. N. Y. Acad. Sci. 673: 126-141. Ho, T.Y., Chen, Y.S. and Hsiang, C.Y. (2007) Noninvasive nuclear factor-kappaB bioluminescence imaging for the assessment of host-biomaterial interaction in transgenic mice. Biomaterials 28: 4370-4377. Hong, Z., Jiang, Z., Liangxi, W., Guofu, D., Ping, L., Yongling, L., Wendong, P. and Minghai, W. (2004) Chloroquine protects mice from challenge with CpG ODN and LPS by decreasing proinflammatory cytokine release. Int. Immunopharmacol. 4: 223-234. Hool, L.C. (2006) Reactive oxygen species in cardiac signalling: from mitochondria to plasma membrane ion channels. Clin. Exp. Pharmacol. Physiol. 33: 146-151. Hussain, S.P. and Harris, C.C. (2007) Inflammation and cancer: an ancient link with novel potentials. Int. J. Cancer 121: 2373-2380. Hussain, S.P., Hofseth, L.J. and Harris, C.C. (2003) Radical causes of cancer. Nat. Rev. Cancer 3: 276-285. Hutchens, T.W., Henry, J.F., Yip, T.T., Hachey, D.L., Schanler, R.J., Motil, K.J. and Garza, C. (1991) Origin of intact lactoferrin and its DNA-binding fragments found in the urine of human milk-fed preterm infants. Evaluation by stable isotopic enrichment. Pediatr. Res. 29: 243-250. Imai, Y., Parodo, J., Kajikawa, O., de Perrot, M., Fischer, S., Edwards, V., Cutz, E., Liu, M., Keshavjee, S., Martin, T.R., Marshall, J.C., Ranieri, V.M. and Slutsky, A.S. (2003) Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA 289: 2104-2112. Izzi, V., Masuelli, L., Tresoldi, I., Sacchetti, P., Modesti, A., Galvano, F. and Bei, R. (2012) The effects of dietary flavonoids on the regulation of redox inflammatory networks. Front. Biosci. 17: 2396-2418. Jabs, T. (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem. Pharmacol. 57: 231-245. Kim, J.B., Urban, K., Cochran, E., Lee, S., Ang, A., Rice, B., Bata, A., Campbell, K., Coffee, R., Gorodinsky, A., Lu, Z., Zhou, H., Kishimoto, T.K. and Lassota, P. (2010) Non-invasive detection of a small number of bioluminescent cancer cells in vivo. PLoS One 5: e9364. Kramer, A.A., Postler, G., Salhab, K.F., Mendez, C., Carey, L.C. and Rabb, H. (1999) Renal ischemia/reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability. Kidney Int. 55: 2362-2367. Kuhara, T., Yamauchi, K. and Iwatsuki, K. (2012) Bovine lactoferrin induces interleukin-11 production in a hepatitis mouse model and human intestinal myofibroblasts. Eur. J. Nutr. 51: 343-351. Le Douce, V., Herbein, G., Rohr, O. and Schwartz, C. (2010) Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage. Retrovirology 7: 32-48. Lee, P.J. and Choi, A.M. (2003) Pathways of cell signaling in hyperoxia. Free Radic. Biol. Med. 35: 341-350. Legrand, D., Elass, E., Carpentier, M. and Mazurier, J. (2005) Lactoferrin: a modulator of immune and inflammatory responses. Cell. Mol. Life Sci. 62: 2549-2559. Leon-Sicairos, N., Martinez-Pardo, L., Sanchez-Hernandez, B., de la Garza, M. and Carrero, J.C. (2012) Oral lactoferrin treatment resolves amoebic intracecal infection in C3H/HeJ mice. Biochem Cell Biol 90: 435-441. Levay, P.F. and Viljoen, M. (1995) Lactoferrin: a general review. Haematologica 80: 252-267. Li, X.J., Liu, D.P., Chen, H.L., Pan, X.H., Kong, Q.Y. and Pang, Q.F. (2012) Lactoferrin protects against lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 12: 460-464. Lin, W.W. and Karin, M. (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Invest. 117: 1175-1183. May, M.J. and Ghosh, S. (1998) Signal transduction through NF-kappa B. Immunol. Today 19: 80-88. Metz-Boutigue, M.H., Jolles, J., Mazurier, J., Schoentgen, F., Legrand, D., Spik, G., Montreuil, J. and Jolles, P. (1984) Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. Eur. J. Biochem. 145: 659-676. Neff, L., Zeisel, M., Sibilia, J., Scholler-Guinard, M., Klein, JP. and Wachsmann, D. (2001) NF-kappaB and the MAP kinases/AP-1 pathways are both involved in interleukin-6 and interleukin-8 expression in fibroblast-like synoviocytes stimulated by protein I/II, a modulin from oral streptococci. Cell. Microbiol. 3: 703-712. O''Brien-Ladner, A.R., Nelson, M.E., Cowley, B.D., J.r., Bailey, K. and Wesselius, L.J. (1995) Hyperoxia amplifies TNF-alpha production in LPS-stimulated human alveolar macrophages. Am. J. Respir. Cell. Mol. Biol. 12: 275-279. Ogawa, Y., Tasaka, S., Yamada, W., Saito, F., Hasegawa, N., Miyasho, T. and Ishizaka, A. (2007) Role of Toll-like receptor 4 in hyperoxia-induced lung inflammation in mice. Inflamm. Res. 56: 334-338. Pain, B., Chenevier, P .and Samarut J (1999) Chicken embryonic stem cells and transgenic strategies. Cells Tissues Organs 165: 212-219. Poyton, R.O., Bal,l K.A. and Castello, P,.R. (2009) Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol. Metab. 20: 332-340. Prentice, A., Ewing, G., Roberts, S.B., Lucas, A., MacCarthy, A., Jarjou, L.M. and Whitehead, R.G. (1987) The nutritional role of breast-milk IgA and lactoferrin. Acta. Paediatr. Scand. 76: 592-598. Prise, K.M., and O''Sullivan, J.M. (2009) Radiation-induced bystander signalling in cancer therapy. Nat. Rev. Cancer 9: 351-360. Rath, P.C. and Aggarwal, B.B. (2001) Antiproliferative effects of IFN-alpha correlate with the downregulation of nuclear factor-kappa B in human Burkitt lymphoma Daudi cells. J. Interferon Cytokine Res. 21: 523-528. Reuter, S., Gupta, S.C., Chaturvedi, M.M. and Aggarwal, B.B. (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med. 49: 1603-1616. Rodrigues, L., Teixeira, J., Schmitt, F., Paulsson, M. and Mansson, H.L. (2009) Lactoferrin and cancer disease prevention. Crit. Rev. Food Sci. Nutr. 49: 203-217. Rubenfeld, G.D. and Herridge, M.S. (2007) Epidemiology and outcomes of acute lung injury. Chest 131: 554-562. Schanbacher, F.L., Goodman, R.E. and Talhouk, R.S. (1993) Bovine mammary lactoferrin: implications from messenger ribonucleic acid (mRNA) sequence and regulation contrary to other milk proteins. J. Dairy Sci. 76: 3812-3831. Schetter, A.J., Heegaard, N.H. and Harris, C.C. (2010) Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis 31: 37-49. Shea, L.M., Beehler, C., Schwartz, M., Shenkar, R., Tuder, R. and Abraham, E. (1996) Hyperoxia activates NF-kappaB and increases TNF-alpha and IFN-gamma gene expression in mouse pulmonary lymphocytes. J. Immunol. 157: 3902-3908. Su, Y.C., Chuang, K.H., Wang, Y.M., Cheng, C.M., Lin, S.R., Wang, J.Y., Hwang, J.J., Chen, B.M., Chen, K.C., Roffler, S. and Cheng, T.L. (2007) Gene expression imaging by enzymatic catalysis of a fluorescent probe via membrane-anchored beta-glucuronidase. Gene Ther. 14: 565-574. Suzuki, Y.A., Lopez, V. and Lonnerdal, B. (2005) Mammalian lactoferrin receptors: structure and function. Cell. Mol. Life Sci., 62, 2560-2575 Tomita, M., Wakabayashi, H., Shin, K., Yamauchi, K., Yaeshima, T. and Iwatsuki, K. (2009) Twenty-five years of research on bovine lactoferrin applications. Biochimie 91: 52-57. Tsan, M.F., White, J.E., Michelsen, P.B. and Wong, G.H. (1995) Pulmonary O2 toxicity: role of endogenous tumor necrosis factor. Exp. Lung Res. 21: 589-597. Wakabayashi, H., Abe, S., Okutomi, T., Tansho, S., Kawase, K. and Yamaguchi, H. (1996) Cooperative anti-Candida effects of lactoferrin or its peptides in combination with azole antifungal agents. Microbiol. Immunol. 40: 821-825. Wenger, R.H. (2000) Mammalian oxygen sensing, signalling and gene regulation. J. Exp. Biol. 203: 1253-1263. Yamauchi, K., Tomita, M., Giehl, T.J. and Ellison, R.T.3rd, (1993) Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect. Immun. 61: 719-728. Yanase, S. and Ishii, N. (2008) Hyperoxia exposure induced hormesis decreases mitochondrial superoxide radical levels via Ins/IGF-1 signaling pathway in a long-lived age-1 mutant of Caenorhabditis elegans. J. Radiat. Res. 49: 211-218. Ye, X.Y., Wang, H.X., Liu, F. and Ng, T.B. (2000) Ribonuclease, cell-free translation-inhibitory and superoxide radical scavenging activities of the iron-binding protein lactoferrin from bovine milk. Int. J. Biochem. Cell. Biol. 32: 235-241. Yen, C.C., Lin, C.Y., Chong, K.Y., Tsai, T.C., Shen, C.J., Lin, M.F., Su, C.Y., Chen, H,L. and Chen, C.M. (2009) Lactoferrin as a natural regimen for selective decontamination of the digestive tract: recombinant porcine lactoferrin expressed in the milk of transgenic mice protects neonates from pathogenic challenge in the gastrointestinal tract. J. Infect. Dis. 199: 590-598. Zaher, T.E., Miller, E.J., Morrow, D.M., Javdan, M. and Mantell, L.L. (2007) Hyperoxia-induced signal transduction pathways in pulmonary epithelial cells. Free Radic. Biol. Med. 42: 897-908. Zimecki, M., Artym, J., Kocieba, M. and Kruzel, M. (2012) Effects of lactoferrin on elicitation of the antigen-specific cellular and humoral cutaneous response in mice. Postepy Hig. Med. Dosw. (Online) 66: 16-22.
摘要: 
高濃度氧在臨床上常被用來治療低血氧相關的症狀,經由充足的氧氣換率以維持呼吸系統及組織的正常運作,但因高氧環境在生物體內容易造成活性氧化物的產生,長期使用高濃度氧治療,容易因氧分子的不穩定而轉變成自由基,產生毒性代謝物,使患者病情惡化。在許多研究中已證實乳鐵蛋白有抗發炎、抗氧化及抗病毒等多功能特性,其是一種含鐵離子的醣蛋白,大多存在於哺乳動物的乳汁中,並能幫助生物體增強免疫能力,因此本試驗中將以乳鐵蛋白的餵食,探討其對高濃度氧損傷之防禦功效。本研究試驗材料為NF-κB-Luciferase基因轉殖鼠,其帶有luciferase冷光基因,隨著高濃度氧誘發NF-κB的活化,冷光基因的表現量亦隨之增加,經由體外注射的受質(luciferin),與冷光蛋白反應,利用活體影像系統(in vivo imaging system;IVIS),以非侵入性方式,即時觀察冷光激發表現。本試驗以同型合子之NF-κB-Luciferase(NF-κB-Luc+/+)基因轉殖鼠分為四組:(1)NF-κB-Luc+/++ water小鼠正常控制組、(2)NF-κB-Luc+/+小鼠+ water +高濃度氧72小時、(3)NF-κB-Luc+/+ 小鼠+150 mg/kg 乳鐵蛋白+高濃度氧72小時、與(4)NF-κB-Luc+/+ 小鼠+300 mg/kg 乳鐵蛋白+高濃度氧72小時(n ≥ 5)。NF-κB-Luciferase基因轉殖鼠在預先餵食乳鐵蛋白14天後,加以高濃度氧環境作用72小時,並以活體影像分析乳鐵蛋白的抗發炎效果。試驗結果發現,NF-κB-Luciferase基因轉殖鼠在高濃度氧誘發後,在活體影像中腎臟會有較高度的冷光表現,肺部也有明顯的冷光激發但較微弱,成功建立活體冷光模式,而預處理乳鐵蛋白的組別中,其肺部及腎臟的冷光基因表現均降低,在高濃度氧誘發調控路徑中,肺部及腎臟的活性氧化物(ROS)與p-MAPK含量有顯著性減緩(p < 0.01),而IκB裂解比例亦顯著降低,且體內的IL-6、IL-1β及TNF-α等發炎相關因子均明顯下降(p < 0.01),得知乳鐵蛋白的餵食確實能有效減少高濃度氧所造成的NF-κB活化,進而達到減緩發炎反應的發生。推測為乳鐵蛋白的餵食可經由小腸黏膜細胞之乳鐵蛋白受體,將乳鐵蛋白帶到肺部及腎臟組織,於細胞內或血流中減少ROS生成;此外,乳鐵蛋白中的三價鐵離子能穩定活性氧化物的活性,減少自由基對生物體的傷害,以及對於發炎反應的抑制功效,而在後續研究中,將持續探討與追蹤相關的發炎路徑,並運用腎臟高度冷光表現之特性,進行局部性發炎與抑制的試驗。

Hyperoxia is used to cure hypoxemia in clinical symptoms, through oxygen supplementation to maintain adequate tissue and respiratory oxygenation. However, exposure to hyperoxia may produce reactive oxygen species (ROS) in vivo easily. Lactoferrin (LF) is an iron-binding glycoprotein found in mammal’s milk, and it can improve immunomodulatory effects. Additionally, many studies demonstrated that LF has a number of biological functions including anti-inflammatory, anti-oxidant, anti-viral effects, and so on. Since patients were treated with hyperoxia for a long term, ROS would exacerbate disease with toxic metabolites. Therefore, we investigated the anti-inflammatory effects of LF on hyperoxia-induced systemic inflammatory responses. The anti-inflammatory therapy model was using NF-κB/luciferase transgenic mice (Tg mice), which are carrying the luciferase gene under the control of NF-κB. When NF-κB was activated by hyperoxia, luciferase protein would show higher expression. Luciferase protein would response with liciferin from injection, and then used non-invasive in vivo imaging system (IVIS) to observe luminescence excitation performance immediately. The transgenic mice with homozygous NF-κB/luciferase (NF-κB-Luc+/+) genotype were randomly assigned to four groups for treatments (n ≥ 5): (1) NF-κB-Luc+/+ mice treated with water, (2) NF-κB-Luc+/+ mice treated with water and hyperoxia for 72 hours, (3) NF-κB-Luc+/+ mice treated with 150 mg/kg LF and hyperoxia for 72 hours, and (4) NF-κB-Luc+/+ mice treated with 300 mg/kg LF and hyperoxia for 72 hours. And NF-κB-Luc+/+ mice pre-treated LF or water daily for 14 days. We found that the highest expression of luciferase protein in hyperoxia-induced NF-κB-Luc+/+ Tg mice were detected in the kidney tissue, and also weaker expression in lung tissue by IVIS, indicating that we established the in vivo image model successfully. As Tg mice were treated with LF, the lower expression of luciferase were observed in lung and kidney, and the ROS and p-MAPK expression also decreased significantly(p < 0.01)under hyperoxia condition. The decayed ratio of IκB also was decreased significantly. Additionally, LF effectively decreased the expression of the inflammatory factors including IL-6, IL-1β, and TNF-α(p < 0.01). Data suggested that LF decreased the activation of NF-κB and exerted an anti-inflammatory effect under the hyperoxia-induced injury. We speculated that LF could be absorbed through specific LF receptors of intestinal mucosal cells. And LF would be transported to lung and kidney to decrease the produce of ROS in intracellular or blood flow. Besides, LF with Iron ions could balance the ROS activities, decrease the injury from radicals and inhibit the inflammatory effect. In the following study, we will continue to investigate and track the inflammation pathway. Furthermore, using the characteristics of kidney with highly luciferase expression, test the inflammatory and suppress effect in the local tissue.
URI: http://hdl.handle.net/11455/20241
其他識別: U0005-2901201318041100
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.