Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20245
標題: 利用酵母菌雙雜交法鑑定Argonaute4蛋白與冰花E3 ligase McCPN1具有交互作用
Yeast two-hybrid identification of E3 ligase McCPN1-interacting protein Argonaute4 in halophyte Mesembryanthemum crystallinum L.
作者: 李長樺
Li, Chang-Hua
關鍵字: 冰花;ice plant;酵母菌雙雜交試驗;Mesembryanthemum crystallinum L.;E3 ligase;yeast two-hybrid;McCPN1;agronaute4;McAGO4
出版社: 生命科學系所
引用: Chapter One References: Acconcia, F., Sigismund, S., and Polo, S. (2009). Ubiquitin in trafficking: the network at work. Exp. Cell Res. 315: 1610–1618. Adams, L., Scott, G.K., and Weinberg, C.S. (1996). Biphasic modulation of cell growth by recombinant human galectin-1. Biochim. Biophys. Acta. 1312: 137–144. Adams, P., Nelson, D., Yamada, S., Chmara, W., Jensen, R.G., Bohnert, H.J., and Griffiths, H. (1998). Tansley review no. 97: Growth and development of Mesembryanthemum crystallinum. New Phytol. 138: 171–190. Adams, P., Thomas, J.C., Vernon, D.M., Bohnert, H.J., and Jensen, R.G. (1992). Distinct cellular and organismic responses to salt stress. Plant Cell Physiol. 33: 1215–1223. Agarie, S., Shimoda, T., Shimizu, Y., Baumann, K., Sunagawa, H., Kondo, A., Ueno, O., Nakahara, T., Nose, A., and Cushman, J.C. (2007). Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J. Exp. Bot. 58: 1957–1967. Agustí, J., Merelo, P., Cercó s, M., Tadeo, F.R., and Talón, M. (2008). Ethylene-induced differential gene expression during abscission of citrus leaves. J. Exp. Bot. 59: 2717–2733. Agustí, J., Merelo, P., Cercó s, M., Tadeo, F.R., and Talón, M. (2009). Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves. BMC Plant Biol. 9: 127. Akinoto, Y., Hirabayashi, J., Kasai, K., and Hirano, H. (1995). Expression of the endogenous 14-kDa beta-galactoside-binding lectin galectin in normal human skin. Cell Tissue Res 280: 1–10. Allen, E., Xie, Z., Gustafson, A.M., and Carrington, J.C. (2005). microRNA directed phasing during trans-acting siRNA biogenesis in plants. Cell 121: 207–221. Alpert, P. (2006). Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J. Exp. Biol. 209: 1575–1584. Alvim, F.C., Carolino, S.M., Cascardo, J.C., Nunes, C.C., Martinez, C.A., Otoni, W.C. and Fontes, E.P. (2001). Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol. 126: 1042–1054. Apse, M.P., Aharon, G.S., Snedden, W.A., and Blumwald, E. (1999). Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256–1258. Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, S., Allen, A.E., Apt, K.E., Bechner, M., Brzezinski, M.A., Chaal, B.K., Chiovitti, A., Davis, A.K., Demarest, M.S., Detter, J.C., Glavina, T., Goodstein, D., Hadi, M.Z., Hellsten, U., Hildebrand, M., Jenkins, B.D., Jurka, J., Kapitonov, V.V., Kröger, N., Lau, W.W., Lane, T.W., Larimer, F.W., Lippmeier, J.C., Lucas, S., Medina, M., Montsant, A., Obornik, M., Parker, M.S., Palenik, B., Pazour, G.J., Richardson, P.M., Rynearson, T.A., Saito, M.A., Schwartz, D.C., Thamatrakoln, K., Valentin, K., Vardi, A., Wilkerson, F.P., Rokhsar, D.S. (2004). The Genome of the diatom Thalassiosira pseudonana: Ecology, Evolution, and Metabolism. Science 306: 79–86. Baena-González, E., Rolland, F., Thevelein, J.M., and Sheen, J. (2007). A central integrator of transcription networks in plant stress and energy signaling. Nature 448: 938–942. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function, Cell 116: 281–297. Bartel, P.L, Chien, C.T., Sternglanz, R., and Fields, S. (1993). Elimination of false positives that arise in using the two-hybrid system. Biotechniques 14: 920–924. Bartels, D., and Sunkar, R. (2005). Drought and salt tolerance in plants. CRC Crit. Rev. Plant Sci. 24: 23–58. Basu, D., Le, J., Zakharova, T., Mallery, E.L., and Szymanski, .D.B. (2008). A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complex. PNAS 105: 4044–4049. Baum, L.G., Pang, M., Perillo, N.L., Wu, T., Delegeane, A., Uittenbogaart, C.H., Fukuda, M., and Seilhamer, J.J. (1995). Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J. Exp. Med. 181: 877–887. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. (2011). The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334: 1524–1529. Bernard, P., and Couturier, M. (1992). Cell killing by the F plasmid ccdB protein involves poisoning of DNA-topoisomerase II complexes. J. Mol. Biol. 226: 735–745. Bhandal, I.S., and Malik, C.P. (1988). Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plant. Int. Rev. Cytol. 110: 205–254. Blumenthal, R.M. (1989). Cloning and restricition of methylated DNA in Escherichia coli. Focus 11: 41–46. Blumwald, E., Aharom, G., and Apse, M.P. (2000). Sodium transporter in plant cells. Biochem. Biophys. Acta. 1465: 140–151. Bohnert, H.J. and Cushman, J. (2000). The ice plant cometh: lessons in abiotic stress tolerance. J. Plant Growth Regul. 19: 334–346. Bohnert, H.J., Nelson, D.E., and Jensen, R.G. (1995). Adaptations to environmental stresses. Plant Cell 7: 1099–1111. Bukau, B., Deuerling, E., Pfund, C. and Craig, E.A. (2000). Getting newly synthesized proteins into shape. Cell 101: 119–122. Catala, C., Rose, J.K.C., and Bennett, A.B. (1997). Auxin regulation and spatial localization of an endo-1, 4-b-d-glucanase and a xyloglucan endotransglucosylase in expanding tomato hypocotyls. Plant J. 12: 417–426. Catala, C., Rose, J.K.C., York, W.S., Albersheim, P., Darvill, A.G., and Bennett, A.B. (2001). Characterization of a tomato xyloglucan endotransglucosylase gene that is down-regulated by auxin in etiolated hypocotyls. Plant Physiol. 127: 1180–1192. Castronovo, V., Van Den Brule, F.A., Jackers, P., Clausse, N., Liu, F., Gillet, C., and Sobel, M.E. (1995). Decreased expression of galectin- 3 is associated with progression of human breast cancer. J Pathology 179: 43–48. Caron, M., Bladier, D., and Joubert, R. (1990). Soluble galactosidebinding vertebrate lectins: a protein family with common properties. Int. J. Biochem. 22:1379–1385. Caudell, E.G., Caudell, J.J., Tang, C., Yu, T., Frederick, M.J., and Grimm, E.A. (2000). Characterization of human Copine III as a phosphoprotein with associated kinase activity. Biochem. 39, 13034–13043. Chan, N.L. and Hill, C.P. (2001). Defining polyubiquitin chain topology. Nat. Struct. Biol. 8: 650–652. Chaves, M.M., Maroco, J., and Pereira, J. (2003). Understanding plant responses to drought – from genes to the whole plant, Funct. Plant Biol. 30: 239–264. Chehab, E.W., Patharkar, O.R., and Cushman, J.C. (2007). Isolation and characterization of a novel v-SNARE family protein that interacts with a calcium-dependent protein kinase from the common ice plant, Mesembryanthemum crystallinum. Planta. 225: 783–799. Chehab, E.W., Patharkar, O.R., Hegeman, A.D., Taybi, T., and Cushman, J.C. (2004). Autophosphorylation and subcellular localization dynamics of a salt- and water deficit-induced calcium-dependent protein kinase from Ice Plant. Plant Physiol. 135, 1430–1446. Chen, H.H. (2010). Establish of Agrobacterium-mediated transformation system in Mesembryanthemum crystallinum L.. Master thesis, Department of Life Sciences, National Chung-Hsing University. Chen, Y.C. (2006). Identification of full-length sequence and analysis of protein domain of mcCPN1 gene in halophyte Mesembryanthemum crystallinum. Bachelor thesis, Department of Life Sciences, National Chung-Hsing University. Chen, Y.C. (2008). Analysis of gene expression and protein accumulation of E3 ligase mcCPN1 in ice plant. Master thesis, Department of Life Sciences, National Chung-Hsing University. Chien, C.T., Bartel, P.L., Sternglanz, R., and Fields, S. (1991). The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. PNAS U.S A. 88:9578–9582. Church, D.L., and Lambie, E.J. (2003). The promotion of gonadal cell divisions by the Caenorhabditis elegans TRPM cation channel GON-2 Is antagonized by GEM-4 copine. Genetics 165, 563–574. Citterio, E., Papait, R., Nicassio, F., Vecchi, M., Gomiero, P., Mantovani, R., Di Fiore, P.P., Bonapace, I.M.. (2004). Np95 is a histone-binding protein endowed with ubiquitin ligase activity. Mol. Cell Biol. 24: 2526–2235. Cleves, A.E., Cooper, D.N., Barondes, S.H., and Kelly, R.B. (1996). A new pathway for protein export in Saccharomyces cerevisiae. J. Cell Biol. 133:1017–1026 Corsi, A.K. and Schekman, R. (1997). The lumenal domain of Sec63p stimulates the ATPase activity of BiP and mediates BiP recruitment to the translocation in Saccharomyces cerevisiae. J. Cell Biol. 137: 1483–1493. Costa, M.D.L., Reis, P.A.B., Valente, M.A.S., Irsigler, A.S.T., Carvalho, C.M., Loureiro, M.E., Aragaão, F.J.L., Boston, R.S., Fietto, L.G., and Fontes, E.P.B. (2008). A new branch of endoplasmic reticulum stress signaling and the osmotic signal converge on plant specific asparagine-rich proteins to promote cell death. JBC 283: 20209–20219. Cote, J.F., and Vuori, K. (2002). Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J. Cell Sci. 115: 4901–4913. Coupe, S.A., Palmer, B.G., and Lake, J.A. (2006). Systemic signaling of environmental cues in Arabidopsis leaves. J. Exp. Bot. 57: 329–341. Craig, A., Ewan, R., Mesmar, J., Gudipati, V., and Sadananadom, A. (2009). E3 ubiquitin ligases and plant innate immunity. J. Exp. Bot. 60: 1123–1132. Creutz, C.E., Tomsig, J.L., Snyder, S.L., Gautier, M., Skour, F., Beisson, J., and Cohen, J. (1998). The Copine, a novel class of C2 domain-containing, calicium dependent, phospholipids-binding proteins conserved from Paramecium to humans. J. Biol. Chem. 273, 1393–1402. Cushman, J.C., Agarie, S., Albion, R.L., Elliot, S.M., Taybi, T., and Borland, A.M. (2008). Isolation and characterization of mutants of common ice plant deficient in crassulacean acid metabolism. Plant Physiol. 147: 228–238. Cuhman, J.C., and Bohnert, H.J. (2000). Genomic approaches to plant stress tolerance. Plant Biol. 3: 117–124. Cushman, J.C., Tillet, R.L., Wood, J.A., Branco, J.M., and Schlauch, K.A. (2008). Large-scale mRNA expression profiling in the common ice plant, Mesembryanthemum crystallinum, performing C3 photosynthesis and Crassulacean acid metabolism (CAM). J. Exp. Bot. 59: 1875–1894. Cushman, J.C., Wulan, T., Kuscuoglu, N., and Spatz, M.D. (2000). Efficient plant regeneration of Mesembryanthemum crystallinum via somatic embryogenesis. Plant Cell Rep. 19: 459–463. Damer, C.K., Bayeva, M., Hahn, E.S., Rivera, J., and Socec, C.I. (2005). Copine A, a calcium-dependent membrane-binding protein, transiently localizes to the plasma membrane and intracellular vacuoles in Dictyostelium. BMC Cell Biol. 6: 46. Damer, C.K., Bayeva, M., Kim, P.S., Ho, L.K., Eberhardt, E.S., Socec, C.I., Lee, J.S., Bruce, E.I., Goldman-Yassen, A.E., and Naliboff, L.C. (2007). Copine A is required for cytokinesis, contractile vacuole function, and development in Dictyostelium. Eukaryot. Cell 6: 430–442. Davies, J.M. (1997). Vacuolar energization: pumps, shunts and stress. J. Exp. Bot. 48: 633–641. de Jonge, H.R., Hogema, B., and Tilly, B.C. (2000). Protein N-myristoylation: critical role in apoptosis and salt tolerance. Sci STKE 2000: 1–4. de Silva, J., Jarman, C.D., Arrowsmith, D.A., Stronach, M.S., Chengappa, S., Sidebottom, C., and Reid, J.S. (1993). Molecular characterization of a xyloglucan specific endo-(1, 4)-b-d-glucanase (xyloglucan endotransglucosylase) from nasturtium seeds. Plant J. 3: 701–711. Devoto, A., Muskett, P.R., and Shirasu, K. (2003). Role of ubiquitination in the regulation of plant defense against pathogens. Curr. Opin. Plant Biol. 6: 307–311. Dietz, K.J., Tavakoli, N., Kluge, C., Mimura, T., Sharma, S.S., Harris, G.C., Chardonnens, A.N., and Golldack, D. (2001). Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J. Exp. Bot. 53: 1969–1980. Edwards, G.E., Dai, Z., Cheng, S.H., and Ku, M.S.B. (1996). Factors effecting the induction of Crassulacean acid metabolism in Mesmbryanthemum crystallinum. In Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and Evolution. Ecological Studies Vol: 114. Epimanshko, S., Meckel, T., Fischer-Schliebs, E., Luttge, U., and Thiel, G. (2004). Two functionally different vacuoles for static and dynamic purposes in one plant mesophyll leaf cell. Plant J. 37: 294–300. Evans, C.G., Chang, L. and Gestwicki, J.E. (2010). Heat Shock Protein 70 (Hsp70) as an emerging drug target. J. Med. Chem. 53: 4585–4602. Farrás, R., Ferrando, A., Jásik, J., Kleinow, T., Okrész, L., Tiburcio, A., Salchert, K., del Pozo, C., Schell, J., and Koncz, C. (2001). SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase. EMBO J. 20: 2742–2756. Flowers, T.J., and Colmer, T.D. (2008). Salinity tolerance in halophytes. New Phytol. 179: 945–963. Flowers, T.J., and Dalmond, D. (1992). Protein synthesis in halophytes: The influence of potassium, sodium and magnesium in vitro. Plant Soil 146: 153–161. Flowers, T.J., and Yeo, A.R. (1995). Breeding for salinity resistance in crop plants: where next? Aust. J. Plant Physiol. 22, 875–884. Flowers, T.J., Hajibagheri, M.A., and Clipson, N.C.W. (1986). Halophytes. Q. Rev. Biol. 61: 313–337. Flowers, T.J., Troke, R.F., and Yeo, A.R. (1977). The mechanism of salt tolerance in Halophytes. Annu. Rev. Plant physiol. 28: 89–121. Freemont, P.S., Hanson I.M., and Trowsdale, J. (1991). A novel cysteine-rich sequence motif. Cell 64: 483–484. Fry, S.C. (1989). The structure and functions of xyloglucan. J. Exp. Bot. 40: 1–11. Fry, S.C., Smith, R.C., Renwick, K.F., Martin, D.J., Hodge, S.K., and Matthews, K.J. (1992). Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem. J. 282: 821–828. Fry, S.C. (2004). Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol. 161: 641–675. Fujii, H., Chiou, T.J., Lin, S.I., Aung, J.K., and Zhu, J.K. (2005). A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 15: 2038–2043. Gao, Y.P., Young, L., Bonham-Smith, P., and Gusta, L.V. (1999). Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during dermination under stress conditions. Plant Mol. Biol. 40: 635–644. Gao, X.D., Kaigorodov, V., and Jigami, Y. (1999). YND1, a homologue of GDA1, encodes membrane-bound apyrase required for Golgi N- and O-glycosylation in Saccharomyces cerevisiae. JBC 274: 21450–21456. Gaxiola, R.A., Palmgren, M.G., and Schumacher, K. (2007). Plant proton pumps. FEBS Lett. 581: 2204–2214. Geisler-Lee, J., Geisler, M., Coutinho, P.M., Segerman, B., Nishikubo, N., Takahashi, J., Aspeborg, H., Djerbi, S., Master, E., Andersson-Gunnerås, S., Sundberg, B., Karpinski, S., Teeri, T.T., Kleczkowski, L.A., Henrissat, B., and Mellerowicz, E.J. (2006). Poplar carbohydrate-active enzymes. gene identification and expression analyses. Plant Physiol: 140: 946–962. Gething, M.J. (1999). Role and regulation of the ER chaperone BiP. Semin. Cell Dev. Biol. 10: 465–472. Ghassemi, F., Jakeman, A.J., and Nix, H.A. (1995). Salinisation of land and water resources: human causes, extent, management and case studies. In WJ Oxon, WR Gardner, eds, Soil Physics. Ed 5 CAB International, New York. Gonzalez-Carranza, Z.H., Elliott, K.A., and Roberts, J.A. (2007). Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana. J. Exp. Bot. 58: 3719–3730. Gonzalez-Carranza, Z.H., Whitelaw, C.A., Swarup, R., and Roberts, J.A. (2002). Temporal and spatial expression of a polygalacturonase during leaf and flower abscission in oilseed rape and Arabidopsis. Plant Physiol: 128: 534–543. Gordon, J.I., Duronio, R.J., Rudnick, D.A., Adamss, S.P., and Coke, G.W. (1991). Protein N-myristoylation. J. Biol.Chem. 266: 8647–8650. Grant, S.G., Jessee, J., Bloom, F.R., and Hanahan, D. (1990). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. PNAS 87: 4645–4649. Grattan, S.R., and Grieve, C.M. (1999). Salinity-mineral nutrient relations in horticultural crops. Sci. Hortic. 78: 127–157. Graumann, K., Runious, J., and Evans, D.E. (2010). Characterization of SUN-domain proteins at the higher plant nuclear envelope. Plant J. 61: 134–144. Greenway, H., and Munns, R. (1980). Mechanism of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 31: 149–190. Griffiths, G., Brands, R., Burke, B., Louvard, D., and Warren, G. (1982). Viral membrane proteins acquire gakactose in trans Golgi cisternae during intracellular transport. J. Cell. Biol. 95: 781–792. Guy, C.L. and Li, Q.B. (1998) The organization and evolution of the spinach stress 70 molecular chaperone gene family. Plant Cell 10: 539–556. Hagan, I., and Yanagida, M. (1995). The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability. J. Cell Biol. 129: 1033–1047. Hanahan D. (1983). Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557–580. Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K., and Elledge, S. J. (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816. Hartl, F.U. (1996) Molecular chaperones in cellular protein folding. Nature 381: 571–579 Hartl, F.U. and Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852–1858. Hasegawa, P.E., Schlieben, N.H., Nicolay, P., Fischar, K., Fisher, K.L., and Flugge, U.I. (2000). Plant cellular and molecular responses to high salinity. Annu. Res. Plant Physiol. Mol. Biol. 51: 463–499. Hashimoto, H., Horton, J.R., Zhang, X. and Cheng, X. (2009). UHRF1, a modular multi-domain protein, regulates replicationcoupled crosstalk between DNA methylation and histone modifications. Epigenetics 4: 8–14. Hatakeyama, S., Yada, M., Matsumoto, M., Ishida, N. And Nakayama, K.I. (2001). U-box proteins as a new family of ubiquitin-protein ligase. J. Biol. Chem. 276: 33111–33120. Haudek, K.J., Spronk, K.J., Voss, P.G., Patterson, R.J., Wang, J.L., and Arnoys, E.J. (2010). Dynamics of Galectin-3 in the nucleus and cytoplasm. Biochim. Biophys. Acta. 1800: 181–189. Hayashi, T. (1989). Xyloglucans in the primary cell wall. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 139–168. Hengen, P.N. (1997). False positives from the yeast two-hybrid system. Trends Biochem.Sci. 22: 33–34. Hernández-Nistal, J., Martín, I., Labrador, E., and Dopico, B. (2010). The immunolocation of XTH1 in embryonic axes during chickpea germination and seedling growth confirms its function in cell elongation and vascular differentiation. J. Exp. Bot. 61: 4231–4238. Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annu. Rev. Biochem. 67: 425–479. Hirabayashi, J. Kumar, S., and Kasai, K. (1998). Novel galactose-binding protein in annelida. Characterization of 29-kDA tandem repeat-type lectins from the earthworm Lumbricus terrestris. J. Biol. Chem. 273: 14450–14460. Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G. and Jentsch, S. (2002). RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135–141. Hoffmann, A.A., and Hercus, M.J. (2000). Environmental stress as an evolutionary force. Bioscience 50: 217–226. Ho, L.W., Yang, T.T., Shieh, S.S., Edwards, G.E. and Yen, H.E. (2010). Reduced expression of a vesicle trafficking-related ATPase SKD1 decreases salt tolerance in Arabidopsis. Funct. Plant Biol. 37: 962–973. Hong, K.J., Choi, H.W., Hwang, I.S., and Hwang, B.K. (2007). Role of a novel pathogen-induced pepper C3–H–C4 type RING-finger protein gene, CaRFP1, in disease susceptibility and osmotic stress tolerance. Plant Mol. Biol. 63: 571–588. Hrabak, E.M., Chan, C.W., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N., Kudla, J., Luan, S., Nimmo, H.G., Sussman, M.R., Thomas, M., Walker-Simmons, K., Zhu, J.K., and Harmon, A.C. (2003). The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 132: 666–680. Hua, J., Grisafi, P., Cheng, S., and Fink, G.R. (2001). Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. Gene Dev. 15: 2263–2272. Hurley, J.H., Lee, S. and Prag, G. (2006). Review article: ubiquitin-binding domains. Biochem. J. 399: 361–372. Inohara, H., and Raz, A. (1994). Identification of human melanoma cellular and secreted ligands for galectin-3. Biochem. Biophys. Res. Commun. 201: 1366–1375. Irsigler, A.S.T., Costa, M.D.L., Zhang, P., Reis, P.A.B., Dewey, R.E., Boston, R.S., and Fontes, E.P.B. (2007). Expression profiling on soybean leaves reveals integration of ER- and osmotic-stress pathways. BMC Genomics 8: 431. Ishimaru, K. (1999). Transformation of a CAM plant, the facultative halophyte Mesembryanthemum crystallinum by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult. 87: 61–63. Ishimaru, M., and Kobayashi, S. (2002). Expression of a xyloglucan endotransglycosylase gene is closely related to grape berry softening. Plant Sci. 162: 621–628. Iwabuchi, K., Li, B., Bartel, P., and Fields, S. (1993). Use of the two-hybrid system to identify the domain of p53 involved in oligomerization. Oncogene 8: 1693–1696. Jäättelä, M. (1999). Escaping cell death: survival proteins in cancer. Exp. Cell. Res. 248: 30–43 Jambunathan, N., and McNellis, T.W. (2003). Regulation of Arabidopsis COPINE 1 gene expression in response to pathogens and abiotic stimuli. Plant Physiol. 132: 1370–1381. Jambunathan, N., Siani, J.M., and McNellis, T.W. (2001). A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance. Plant Cell 13: 2225–2240. James, P., Haliaday, J., and Craig, E.A. (1996). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144: 1425–1436. Jenkins, Y., Markovtsov, V., Lang, W., Sharma, P., Pearsall, D., Warner, J., Franci, C., Huang, B., Huang, J., Yam, G.C., Vistan, J.P., Pali, E., Vialard, J., Janicot, M., Lorens, J.B., Payan, D.G. and Hitoshi, Y. (2005). Critical role of the ubiquitin ligase activity of UHRF1, a nuclear RING finger protein, in tumor cell growth. Mol. Biol. Cell. 16: 5621–5629. Jiang, C.Z., Lu, F., Imsabai, W., Meir, S., and Reid, M.S. (2008). Silecning polygalacturonase expression inhibits tomato petiole abscission. J. Exp. Bot. 59: 973–979. Jolly, C. and Morimoto, R.I. (2000). Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer. Inst. 92: 1564–1572 Jou, Y.T., Chiang, C.P., Jauh, G.Y., and Yen, H.E. (2006). Functional charactization of ice plant SKD1, an AAA-type ATPase associated with the endoplasmic reticulum-Golgi network, and its role in adaptation to salt stress. Plant Physiol. 141: 135–146. Jou, Y.T., Chou, P.H., He, M.G., Hung, Y.H., and Yen, H.E. (2004). Tissue-specific expression and functional complementation of a yeast potassium-uptake mutant by a salt-induced ice plant gene mcSKD1. Plant Mol. Biol. 54: 881–893. Jou, Y.T. (2007). Characterization of bladder cell-specific mcSKD1 and its interaction protein in halophyte Mesembryanthemum crystallinum. Ph.D. thesis, Department of Life Sciences, National Chung-Hsing University. Kajikawa, T., Nakajima, Y., Hirabayashi, J., Kassai, K., and Yamazaki, M. (1986). Release of cytotoxin by macrophages on treatment with human placenta lectin. Life Sci. 39: 1177–1181. Kalinski, A., Rowley, D.L., Loer, D.S., Foley, C., Buta, G. and Herman, E.M. (1995). Binding-protein expression is subject to temporal, developmental and stress-induced regulation in terminally differentiated soybean organs. Planta 195: 611–621. Karagianni, P., Amazit, L., Qin, J. and Wong, J. (2008). ICBP90, a Novel methyl K9 H3 binding protein linking protein ubiquitination with heterochromatin formation. Mol. Cell Biol. 28: 705–717. Karlin, S. and Brocchieri, L. (1998) Heat shock protein 70 family: multiple sequence comparisons, function, and evolution. J. Mol. Evol. 47: 565–577 Kirkin, V., and Dikic, I. (2007). Role of ubiquitin- and Ubl-binding proteins in cell signaling. Curr. Opin. Cell Biol. 19: 199–205. Klinge, S., Voigts-Hoffmann, F., Leibundgut, M., Arpagaus, S. and Ban, N. (2011). Crystal Structure of the Eukaryotic 60S Ribosomal Subunit in Complex with Initiation Factor 6. Science 334: 941–948. Koncz, C., and Schell, J. (1986). The promoter of the TL-DNA gene 5 control the tissue-specific expression of chimeric gene carried by novel type of Agrobacteriun binary vector. Mol. Gen. Genet. 204: 383–396. Konieczny, R., Obert, O., Bleho, J., Novak, O., Heym, C., Tuleja, M., Muller, J., Strnad, M., Menzel, D., and Samaj, J. (2011). Stable transformation of Mesembryanthemum crystallinum (L.) with Agrobacterium rhizogenes harboring the green fluorescent protein targeted to the endoplasmic reticulum. J. Plant Physiol. 168: 722–729. Kore-eda, S., Crushman, M.A., Akselrod, I., Bufford, D., Fredrickson, M., Clark, E., and Cushman, J.C. (2004). Transcript profiling of salinity stress response by large-scale expressed sequence tag analysis in Mesmbryanthemum crystallinum. Gene 341: 83–92. Kumar, D.P., Vorvis, C., Sarbeng, E.B., Cabra Ledesma, V.C., Willis, J.E. and Liu, Q. (2011) The four hydrophobic residues on the Hsp70 inter-domain linker have two distinct roles. J Mol Biol 411: 1099–1113. Kurasawa, K., Matsui, A., Yokoyama, R., Kuriyama, T., Yoshizumi, T., Matsui, M., Suwabe, K., and Watanabe, M., Nishitani, K. (2009). The AtXTH28 gene, a xyloglucan endotransglucosylase/hydrolase, is involved in automatic self-pollination in Arabidopsis thaliana. Plant Cell Physiol. 50: 413–422. Kwon, S.J., Choi, E.Y., and Choi, Y. J. (2006). Proteomics studies of posttranslational modifications in plants. J. Exp. Bot. 57: 1547–1551. Lacy, D.B., Wigelsworth, D.J., Scobie, H.M., Young, J.A. and Collier, R.J. (2004). Crystal structure of the von Willebrand factor A domain of human capillary morphogenesis protein 2: An anthrax toxin receptor. Proc. Natl. Acad. Sci. U.S.A. 101: 6367–6372. Lannoo, N., and Van Damme, E.J. (2010). Nucleocytoplasmic plant lects. Biochim. Biophys. Acta. 1800: 190–201. Lashbrook, C.C., and Cai, S. (2008). Cell wall remodeling in Arabidopsis stamen abscission zones. Plant Signal. Behav. 3: 733–736. Lazof, D.B., and Berstein, N. (1999). The NaCl induced inhibition of shoot growth: the case for distributed nutrition with special consideration of calcium. Adv. Bot. Res. 29: 113–189. Leffler, H., and Barondes, S.H. (1986). Specificity of binding of three soluble rat lung lectins to substituted and unsubstituted mammalian b-galactosides. JBC 261:10119–10126. Li, B., and Fields, S. (1993). Identification of mutations in p53 that affect its binding to SV40 T antigen by using the yeast two-hybrid system. FASEB J. 7: 957–963. Li, X., Wu, Y., Zhang, D.Z., Gillikin, J.W., Boston, R.S., Franceschi, V.R. and Okita, T.W. (1993). Rice prolamine protein body biogenesis: a BiP-mediated process. Science 262: 1054–1056. Lichtenthaler, H.K. (1998). The stress concept in plants: an introduction. Ann. N. Y. Acad. Sci. 30: 187–198. Li, H.Y., Guo, Z.F., and Zhu, Y.X. (1998). Molecular cloning and analysis of a pea cDNA that is expressed in darkness and very rapidly induced by gibberellic acid. Mol. Gen. Genet. 259: 393–397. Li, Y., Sorefan, K., Hemmann, G., and Bevan, M.W. (2004). Arabidopsis NAP and PIR regulate actin-based cell morphogenesis and multiple developmental processes. Plant Physiol. 136: 3616–3627. Liu, J., Jambunathan, N., and McNellis, T.W. (2005). Transgenic expression of the von Willebrand A domain of the BONZAI 1/ COPINE 1 protein triggers a lesion-mimic phenotype in Arabidopsis. Planta 221: 85–94. Liu, Y., Liu, D., Zhang, H., Gao, H., Guo, X., Wang, D., Zhang, X., and Zhang, A. (2007). The alpha- and beta-expansin and xyloglucan endotransglucosylase/hydrolase gene families of wheat: molecular cloning, gene expression, and EST data mining. Genomics 90: 516–529. Lotz, M.M., Andrews, C.W. Jr, Korzelius, C.A., Lee, E.C., Steele, G.D. Jr, Clarke, A., and Mercurio, A.M. (1993). Decreased expression of Mac-2 (carbohydrate binding protein 35) and loss of its nuclear localization are associated with the neoplastic progression of colon carcinoma. PNAS USA 90: 3466–3470. Louret, O.F., Doignon, F., and Crouzet, M. (1997). Stable DNA binding yeast vector allowing high bait expression for use in the two-hybrid system. Bio Techniques 23: 816–819. Lovering, R., Hanson, I.M., Borden, K.L., Martin, S., O’Reilly, N.J., Even, G.I., Rahman, D., Pappin, D.J., Trowsdale, J., and Freemont, P.S. (1993). Identification and preliminary characterization of a protein motif related to the Zinc-finger. PNAS 90: 2112–2116. Lüders, J., Demand, J. and Höhfeld, J. (2000). The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J. Biol. Chem. 275: 4613–4617. Ludwig, A.A., and Tenhaken, R. (2001).A new cell wall located n-rich protein is strongly induced during the hypersensitive response in Glycine max L. Eur. J. Plant Pathol. 107: 323–336. Mahajan, S., Pandey, G.K., and Tuteja, N. (2008). Calcium- and salt-stress signaling in plants: Shedding light on SOS pathway. Arch. Biochem. Biophys. 471: 146–158. Maitra, R., Grigoryev, D.N., Bera, T.K., Pastan, I.H., and Lee, B. (2003). Cloning, molecular characterization, and expression analysis of Copine 8. BBRC 303: 842–847. Malone, C.J., Fixsen, W.D. Horvitz, H.R., and Han, M. (1999). UNC-84 localizes to the nuclear envelop and required for nuclear migration and anchoring during C. elegans development. Development 126: 3171–3181. Matheson, L.A., Hanton, S.L., and Brandizzi, F. (2006). Traffic between the plant endoplasmic reticulum and Golgi apparatus: to the Golgi and beyond. Curr. Opin. Plant Biol. 9: 601–609. Marschner, H. (1995). Mineral nutrition of higher plants. 2nd ed. Academic Press, London. Martínez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J.K., Pardo, J.M., and Quintero, F.J. (2007). Conservation of the Salt Overly Sensitive Pathway in Rice. Plant Physiol. 143: 1001–1012. Mass, E.V. (1993). Salinity and citriculture. Tree Physiol. 12: 195–216. Mayer, M.P. (2005) Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev. Physiol. Biochem. Pharmacol. 153: 1–46. Mayer, M.P. (2010). Gymnastics of Molecular Chaperones. Mol. Cell 39: 321–331. Mayer, M.P. and Bukau, B. (2005). Hsp70 chaperones: Cellular functions and molecular mechanism. Cell Mol. Life Sci. 62: 670–684. Mazel, A., Leshem, Y., Tiwari, B.S., and Levine, A. (2004). Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol. 134: 118–128. Mazzucotelli, S.B., Marone, D., De Leonardis, A.M., Guerra, D., Di Fonzo, N., Cattivelli, L., and Mastrangelo, A.M. (2006). The E3 ubiquitin ligase gene family in plants: regulation by degradation. Curr. Genetics 7: 509–522. Mbéguié-A-Mbéguié, D., Hubert, O., Baurens, F.C., Matsumoto, T., Chillet, M., Fils-Lycaon, B., and Sidibé-Bocs, S. (2009). Expression patterns of cell wall-modifying genes from banana during fruit ripening and in relationship with finger drop. J. Exp. Bot. 60: 2021–2034. McClellan, A.J., Endres, J.B., Vogel, J.P., Palazzi, D., Rose, M.D. and Brodsky, J.L. (1998). Specific molecular chaperone interactions and an ATP-dependent conformational change are required during post-translational protein translocation into the yeast ER. Mol. Biol. Cell 9: 3533–3545 McQueen-Mason, S.J., Fry, S.C., Durachko, D.M., and Cosgrove, D.J. (1993). The relationship between xyloglucan endotransglycosylase and in-vitro cell wall extension in cucumber hypocotyls. Planta 190: 327–331. Meiners, M.S., Thomas, J.C., Bohnert, H.J., and Cushman, J.C. (1991). Regeneration of multiple shoots and plants from Mesembryanthemum crystallinum. Plant Cell Rep. 9: 563–566. Meller, N., Irani-Tehrani, M., Kiosses, W.B., Del Pozo, M.A., and Schwartz, M.A. (2002). Zizimin1, a novel Cdc42 activator, reveals a new GEF domain for Rho proteins. Nat. Cell Bio
摘要: 
冰花(Mesembryanthemum crystallinum L.; ice plant)是一種研究耐鹽機制的模式植物,在特定的生長期間若遭受到高鹽或是乾旱逆境,會誘導特定的反應以適應逆境。McCPN1是從冰花中鑑定出來的一種植物特有的RING-type copine蛋白,其蛋白結構包含在N端負責蛋白間交互作用的copine vWA domain,以及具有ubiquitin E3 ligase活性的really interesting new gene(RING)-finger domain。McCPN1與鹽誘導蛋白McSKD1具有交互作用,藉由ubiquitination修飾McSKD1間接調控蛋白的運輸。與McCPN1 高度相似的AtRGLG2蛋白具有調節阿拉伯芥對乾旱及鹽逆境的反應,為了瞭解McCPN1參與冰花鹽逆境適應的過程,利用全長的McCPN1進行酵母菌雙雜交試驗,在鹽處理冰花根部的cDNA基因庫篩選有交互作用的候選基因。共挑選120個候選基因與McCPN1具有交互作用,並且利用營養篩選與β-galactosidase活性測試,進一步挑選出E3、E9、E35、E36、E45、E46、E65與E67八個候選基因。其中E3與E9比對到Argonaute 4(AGO4),參與了小分子RNA干擾基因表現的機制;E35是具有galactose-binding domain-like與Sad 1/ UNC-like(SUN)C-terminal domain的半乳糖結合蛋白(galactose-binding protein),利用domain分析得知,E35可能參與了細胞吸附、增殖、凋亡、細胞核的固著與移動,以及mRNA的剪接;E36是xyloglucan endotransglucosylase/hydrolases調控細胞壁的延展性並且參與組織脫落、果實的成長、成熟與老化;E45是具有DCD(Development and Cell Death)domain的蛋白,它可以藉由結合細胞骨架蛋白在細胞中移動,並且參與內質網逆境與滲透逆境下造成的程序性細胞凋亡過程;E46在DNA序列比對結果是26S ribosomal RNA而在蛋白質序列上則是比對到玉米的一個未知功能的蛋白;E65是熱休克蛋白70,負責蛋白的摺疊、再摺疊、運輸與透過溶酶體或蛋白酶體的方式降解蛋白,並且避免蛋白的凝聚;E67是SPIKE1蛋白,它調節了細胞骨架的排列,維持細胞骨架調控的細胞型態,並且參與了從內質網到高爾基氏體囊泡運輸之早期分泌路徑的動態平衡。根據酵母菌雙雜交試驗的結果推測,鹽逆境下McCPN1可藉由ubiquitination修飾候選蛋白來控制細胞型態、生長與死亡過程,以及協助蛋白運輸、在摺疊與降解。使用增強型螢光蛋白結合上McCPN1的方式來偵測蛋白累積的位置,結果在原生質膜、內質網與高爾基氏體有螢光蛋白的累積,也發現McCPN1會散佈在細胞質,此現象說明McCPN1廣泛參與細胞各部位的蛋白ubiquitin修飾過程。進一步挑選候選基因AGO4(E3與E9)進行深入的分析,利用快速擴增cDNA片段的方式(rapid amplification of cDNA ends, RACE)鑑定出全長的McAGO4。McAGO4蛋白具有N端DUF1785 domain、位於中間的PAZ domain與C端的PIWI domain。經由成對酵母菌雙雜交試驗(pair-wise Y2H)、pull-down assay、原生質體雙雜交測試(protoplast two-hybrid)與雙分子螢光互補方法(bimolecular fluorescence complementation, BiFC)等方式檢測McCPN1與McAGO4的交互作用,結果證實全長的McCPN1與McAGO4具有交互作用但是強度不高,推測可能是蛋白立體空間上排列位置所造成的結果。根據文獻中AGO4的研究結果,AGO4主要累積在細胞核並且參與了RNA主導的DNA甲基化(RNA-directed DNA methylation, RdDM),而BiFC結果發現McCPN1與McAGO4共同累積在細胞核,顯示McCPN1會移動到核內參與McAGO4所催化的反應。綜合以上結果得知,冰花McCPN1可能參與了許多鹽逆境下的反應,其中之一McCPN1藉由ubiquitination的修飾來調節McAGO4的功能,並且透過RdDM方式調控鹽逆境下的基因表現,進而增加植物對於鹽逆境的忍受度。

Ice plant (Mesembryanthemum crystallinum L.) is a model plant for studying salt-tolerance mechanism in higher plants. The unique responses for salinity tolerance of ice plant can be induced at specific developmental stages. McCPN1, a plant-specific RING-type copine, is identified from halophyte Mesembryanthemum crystallinum L. and has a copine vWA domain at the N-terminus for protein-protein interaction and a C-terminal really interesting new gene (RING)-finger domain which contains ubiquitin E3 ligase activity. McCPN1 interacts and ubiquitinates a salt-induced protein McSKD1, a protein involving in protein trafficking. McCPN1 has high similarity to AtRGLG2, an E3 ligase mediates auxin transport and salt and drought stress response in Arabidopsis. To explore the role of McCPN1 in the salt stress adaptation process of ice plant, full-length McCPN1 was used as a bait to perform yeast two hybrid (Y2H) screen in the cDNA library constructed from roots of salt-treated ice plant. There were 120 candidate proteins identified from Y2H screening and eight candidates, E3, E9, E35, E36, E45, E46, E65 and E67 were chosen to determine the DNA sequences, after nutrition screening and β-galactosidase activity assays. Candidate E3 and E9 were Argonaute 4 (AGO4) which participates in small RNAs interference-mediated regulation of genes expression. E35 was a galactose-binding protein with galactose-binding domain-like and Sad 1/ UNC-like (SUN) C-terminal domain and, based on domain analysis, involved in cell adhesion, proliferation, apoptosis, nuclear anchoring and migration, and pre-mRNA splicing. E36 was xyloglucan endotransglucosylase/hydrolases and participates in cell wall extensibility, abscission, fruit growth, ripening and softening. E45 was DCD (Development and Cell Death) domain protein which interacts with cytoskeleton proteins for its movement and participates in programmed cell death under endoplasmic reticulum stress and osmotic stress. E46 was 26S ribosomal RNA in DNA blasting and unknown function protein of maize in protein sequence searching. E65 was heat shock protein 70 and responsible for proteins folding, refolding, transport and degradation in lysosomes or proteasomes and preventing protein aggregation. E67 was SPIKE1 protein which mediates tissue organization, cell morphology by controlling cytoskeleton microtubule, vesicle trafficking from the ER to Golgi in early secretory pathway homeostasis. According to Y2H result, McCPN1 can interact with candidate proteins to regulate cell morphology, development, death processes, and help protein trafficking, refolding and degradation after salt stress through ubiquitination. Cellular localization of McCPN1-YFP fusion protein was found in the plasma membrane, ER and Golgi, and distributed over the cytoplasm. The result suggests that McCPN1 widely distributes in several compartments and participates the ubiquitination process in these campartments. Candidates E3 and E9 blasted as AGO4 were chosen for further analyses. Full-length McAGO4 was identified by rapid amplification of cDNA ends (RACE). The domain analysis showed it has an amino-terminal domain DUF1785, a central PAZ domain and PIWI domain at C-terminus. Full-length McCPN1 and full-length McAGO4 have weak interaction as shown by pair-wise Y2H, pull-down assay, protoplast two-hybrid and bimolecular fluorescence complementation (BiFC). The weak protein-protein interaction might be the result of steric hindrance between two proteins. It is known that AGO4 locates at the nucleus and is involved in RNA-directed DNA methylation (RdDM). The BiFC results showed McCPN1 and McAGO4 colocalized at the nucleus suggesting that cytoplasmic localized McCPN1 moves to the nucleus to participate McAGO4-mediated gene silencing. In conclusion, McCPN1 is involved in many salt stress responses and one of them is to modulate McAGO4 activity by ubiquitination and changes gene expression profiles to increase salt tolerance of ice plant.
URI: http://hdl.handle.net/11455/20245
其他識別: U0005-2307201315231600
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.