Please use this identifier to cite or link to this item:
標題: 探討錸-188標記之賀癌平治療對於攝護腺癌細胞存活之影響
Inhibitory effects of Re-188 labeled Herceptin on prostate cancer cell survival: a possible radioimmunotherapy to prostate carcinoma
作者: 王心怡
Wang, Hsin-Yi
關鍵字: 賀癌平;Herceptin;攝護腺癌;錸;prostate cancer;Rhenium
出版社: 生命科學系所
引用: 1. Jemal A, Siegel R, Ward E, Murray T, Xu J, et al. (2007) Cancer statistics, 2007. CA Cancer J Clin 57: 43-66. 2. Howlader N NA, Krapcho M, Neyman N, Aminou R, Waldron W, Altekruse SF, Kosary CL, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Chen HS, Feuer EJ, Cronin KA, Edwards BK (eds). (2011) SEER Cancer Statistics Review, 1975-2008, National Cancer Institute. 3. Denmeade SR, Isaacs JT (1997) Prostate cancer: where are we and where are we going? Br J Urol 79 Suppl 1: 2-7. 4. Henry RY, O''Mahony D (1999) Treatment of prostate cancer. J Clin Pharm Ther 24: 93-102. 5. Stavridi F, Karapanagiotou EM, Syrigos KN (2010) Targeted therapeutic approaches for hormone-refractory prostate cancer. Cancer Treat Rev 36: 122-130. 6. Ross JS, Fletcher JA (1998) The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Stem Cells 16: 413-428. 7. Brabender J, Danenberg KD, Metzger R, Schneider PM, Park J, et al. (2001) Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer Is correlated with survival. Clin Cancer Res 7: 1850-1855. 8. Dougall WC, Qian X, Peterson NC, Miller MJ, Samanta A, et al. (1994) The neu-oncogene: signal transduction pathways, transformation mechanisms and evolving therapies. Oncogene 9: 2109-2123. 9. Albanell J, Codony J, Rovira A, Mellado B, Gascon P (2003) Mechanism of action of anti-HER2 monoclonal antibodies: scientific update on trastuzumab and 2C4. Adv Exp Med Biol 532: 253-268. 10. Calvo BF, Levine AM, Marcos M, Collins QF, Iacocca MV, et al. (2003) Human epidermal receptor-2 expression in prostate cancer. Clin Cancer Res 9: 1087-1097. 11. Hernes E, Fossa SD, Berner A, Otnes B, Nesland JM (2004) Expression of the epidermal growth factor receptor family in prostate carcinoma before and during androgen-independence. Br J Cancer 90: 449-454. 12. Morris MJ, Reuter VE, Kelly WK, Slovin SF, Kenneson K, et al. (2002) HER-2 profiling and targeting in prostate carcinoma. Cancer 94: 980-986. 13. Osman I, Scher HI, Drobnjak M, Verbel D, Morris M, et al. (2001) HER-2/neu (p185neu) protein expression in the natural or treated history of prostate cancer. Clin Cancer Res 7: 2643-2647. 14. Shi Y, Brands FH, Chatterjee S, Feng AC, Groshen S, et al. (2001) Her-2/neu expression in prostate cancer: high level of expression associated with exposure to hormone therapy and androgen independent disease. J Urol 166: 1514-1519. 15. Signoretti S, Montironi R, Manola J, Altimari A, Tam C, et al. (2000) Her-2-neu expression and progression toward androgen independence in human prostate cancer. J Natl Cancer Inst 92: 1918-1925. 16. Ahmad I, Patel R, Singh LB, Nixon C, Seywright M, et al. (2011) HER2 overcomes PTEN (loss)-induced senescence to cause aggressive prostate cancer. Proc Natl Acad Sci U S A 108: 16392-16397. 17. Visakorpi T (1999) New pieces to the prostate cancer puzzle. Nat Med 5: 264-265. 18. Craft N, Shostak Y, Carey M, Sawyers CL (1999) A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 5: 280-285. 19. Dean-Colomb W, Esteva FJ (2008) Her2-positive breast cancer: herceptin and beyond. Eur J Cancer 44: 2806-2812. 20. Ziada A, Barqawi A, Glode LM, Varella-Garcia M, Crighton F, et al. (2004) The use of trastuzumab in the treatment of hormone refractory prostate cancer; phase II trial. Prostate 60: 332-337. 21. Agus DB, Scher HI, Higgins B, Fox WD, Heller G, et al. (1999) Response of prostate cancer to anti-Her-2/neu antibody in androgen-dependent and -independent human xenograft models. Cancer Res 59: 4761-4764. 22. Lara PN, Jr., Chee KG, Longmate J, Ruel C, Meyers FJ, et al. (2004) Trastuzumab plus docetaxel in HER-2/neu-positive prostate carcinoma: final results from the California Cancer Consortium Screening and Phase II Trial. Cancer 100: 2125-2131. 23. Chen KT, Lee TW, Lo JM (2009) In vivo examination of (188)Re(I)-tricarbonyl-labeled trastuzumab to target HER2-overexpressing breast cancer. Nucl Med Biol 36: 355-361. 24. Li GP, Zhang YF, Wang YX (2006) [188Re-labeled herceptin inhibits proliferation of breast cancer cell line SKBR-3 in vitro]. Nan Fang Yi Ke Da Xue Xue Bao 26: 1455-1457. 25. Luo TY, Tang IC, Wu YL, Hsu KL, Liu SW, et al. (2009) Evaluating the potential of 188Re-SOCTA-trastuzumab as a new radioimmunoagent for breast cancer treatment. Nucl Med Biol 36: 81-88. 26. Li G, Wang Y, Huang K, Zhang H, Peng W, et al. (2005) The experimental study on the radioimmunotherapy of the nasopharyngeal carcinoma overexpressing HER2/neu in nude mice model with intratumoral injection of 188Re-herceptin. Nucl Med Biol 32: 59-65. 27. Li GP, Huang K, Zhang H (2006) [Efficacy of 188Re-herceptin radioimmunotherapy in nude mouse model of nasopharyngeal carcinoma]. Nan Fang Yi Ke Da Xue Xue Bao 26: 459-462. 28. Dhavan R, Tsai LH (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2: 749-759. 29. Lee KY, Rosales JL, Tang D, Wang JH (1996) Interaction of cyclin-dependent kinase 5 (Cdk5) and neuronal Cdk5 activator in bovine brain. J Biol Chem 271: 1538-1543. 30. Tsai LH, Delalle I, Caviness VS, Jr., Chae T, Harlow E (1994) p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371: 419-423. 31. Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, et al. (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402: 615-622. 32. Lin H, Lin TY, Juang JL (2007) Abl deregulates Cdk5 kinase activity and subcellular localization in Drosophila neurodegeneration. Cell Death Differ 14: 607-615. 33. Lin H, Chen MC, Chiu CY, Song YM, Lin SY (2007) Cdk5 regulates STAT3 activation and cell proliferation in medullary thyroid carcinoma cells. J Biol Chem 282: 2776-2784. 34. Lin H, Juang JL, Wang PS (2004) Involvement of Cdk5/p25 in digoxin-triggered prostate cancer cell apoptosis. J Biol Chem 279: 29302-29307. 35. Hsu FN, Chen MC, Chiang MC, Lin E, Lee YT, et al. (2011) Regulation of Androgen Receptor and Prostate Cancer Growth by Cyclin-dependent Kinase 5. J Biol Chem 286: 33141-33149. 36. Hsu FN, Yang MS, Lin E, Tseng CF, Lin H (2011) The significance of Her2 on androgen receptor protein stability in the transition of androgen requirement in prostate cancer cells. Am J Physiol Endocrinol Metab 300: E902-908. 37. Strock CJ, Park JI, Nakakura EK, Bova GS, Isaacs JT, et al. (2006) Cyclin-dependent kinase 5 activity controls cell motility and metastatic potential of prostate cancer cells. Cancer Res 66: 7509-7515. 38. Lin H, Chen MC, Ku CT (2009) Cyclin-dependent kinase 5 regulates steroidogenic acute regulatory protein and androgen production in mouse Leydig cells. Endocrinology 150: 396-403. 39. Neve RM, Lane HA, Hynes NE (2001) The role of overexpressed HER2 in transformation. Ann Oncol 12 Suppl 1: S9-13. 40. Suzuki H, Freije D, Nusskern DR, Okami K, Cairns P, et al. (1998) Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res 58: 204-209. 41. Dahia PL (2000) PTEN, a unique tumor suppressor gene. Endocr Relat Cancer 7: 115-129. 42. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, et al. (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436: 725-730. 43. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, et al. (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6: 117-127. 44. Sgambato A, Camerini A, Faraglia B, Ardito R, Bianchino G, et al. (2004) Targeted inhibition of the epidermal growth factor receptor-tyrosine kinase by ZD1839 (''Iressa'') induces cell-cycle arrest and inhibits proliferation in prostate cancer cells. J Cell Physiol 201: 97-105. 45. Telliez A, Desroses M, Pommery N, Briand O, Farce A, et al. (2007) Derivatives of Iressa, a specific epidermal growth factor receptor inhibitor, are powerful apoptosis inducers in PC3 prostatic cancer cells. ChemMedChem 2: 318-332. 46. Meyn RE (1997) Apoptosis and response to radiation: implications for radiation therapy. Oncology (Williston Park) 11: 349-356; discussion 356, 361, 365. 47. Stephens LC, Ang KK, Schultheiss TE, Milas L, Meyn RE (1991) Apoptosis in irradiated murine tumors. Radiat Res 127: 308-316. 48. Demelash A, Rudrabhatla P, Pant HC, Wang X, Amin ND, et al. (2012) Achaete-scute homologue-1 (ASH1) stimulates migration of lung cancer cells through Cdk5/p35 pathway. Mol Biol Cell 23: 2856-2866.
雖然荷爾蒙治療對於攝護腺癌的控制效果非常顯著,但使用了一段時間之後,不免會產生抗藥性,這時可用的治療方式有限,患者的預後也不理想。為了改善這個困境,本研究就想利用攝護腺癌腫瘤表面上HER2 (Human Epidermal Growth Factor Receptor 2,人類上皮生長因子第二型接受器)的表現量,會在荷爾蒙治療後明顯上升的現象,來發展一個新的療法。
Trastuzumab (商品名:賀癌平,Herceptin)是用來對抗HER2高表現型乳癌的藥品。本研究利用這個單株抗體對於HER2的高親和性,來攜帶治療性的放射性同位素(錸-188)到HER2高表現腫瘤處進行治療,這個新的核醫藥物就是本研究的標的:Re-188 Herceptin (Re-H)。以下將會分別以體外及體內的方式,評估這個藥物對於HER2高表現的攝護腺癌的治療效果。

本研究所使用高HER2表現的攝護腺癌細胞株為DU145,在使用Re-188 Herceptin治療之後,評估細胞的生長情形,凋亡程度及相關蛋白的變化。除了Re-188 Herceptin這個標的藥物之外,也使用了未標記同位素的Herceptin,未標記Herceptin的同位素Re-188以及生理鹽水(PBS)分別治療,作為對照組。在確定了藥物在體外的表現之後,則將DU145的攝護腺癌細胞株打在小鼠的皮下,待其長成腫瘤之後,再以前述藥物加以治療,除了觀察腫瘤生長及相關蛋白的變化之外,也評估了此藥物在體內的分布情形。

在體外研究中,攝護腺癌細胞株DU145的生長受到Re-H及Re-188抑制,此抑制隨著給予的劑量及治療後的時間而增加,而對照組的Herceptin 及PBS則無此現象。細胞凋亡的現象也在Re-H治療後出現,在其他的對照組則不明顯。鼠體內的藥物分佈顯示Re-H果然因Herceptin的特異性而聚集在小鼠皮下的腫瘤。治療後的腫瘤生長受到抑制,凋亡相關蛋白出現相對應的變化,甚至連藉由活化Cdk5來調控腫瘤細胞存活及侵襲性的p35也出現了明顯的下降。

本研究顯示Re-188 Herceptin可有效抑制高HER2表現的攝護腺癌細胞株DU145的生長,這是單純使用Re-188 或Herceptin所達不到的。Re-188 Herceptin這個新的核醫藥物可望日後可以應用在具高HER2表現的攝護腺癌患者身上。

Advanced or metastatic prostate cancers tend to turn into castration-resistant cancers after hormonal therapy. Most of these cases are characterized by elevated HER2 expression and have poor prognosis. Herceptin (Trastuzumab), a humanized anti-HER2 monoclonal antibody, is widely used for the treatment of patients with HER2-overexpressing breast cancer. However, the application of Herceptin in prostate cancer patients is still controversial. In order to understand whether radioimmunotherapeutic strategy is more effective than immunotherapy by attacking HER2 alone, we labeled the Rhenium-188, a beta emitter, onto Herceptin to evaluate its radioimmunotherapeutic effect on prostate cancer with elevated HER2 expression in vitro and in vivo compared with immunotherapy with Herceptin alone and radiotherapy with Re-188 alone.

DU145, an androgen receptor negative prostate cancer cell line with elevated HER2 expression, was used to evaluate the therapeutic effect of the Herceptin labeled with Rhenium-188 (Re-188), a beta emitter. Its effect is evaluated in vitro on cell growth, extent of apoptosis, protein levels as well as in vivo on bio-distribution, tumor growth, apoptosis and protein levels.

The proliferation of DU145 cells was inhibited after treated with the Re-188 Herceptin (Re-H) in dose- and time-dependent manners but not in the control groups treated with PBS (phosphate buffered saline) and Herceptin alone. The proliferate inhibition and apoptosis were induced after Re-H treatment. The in vivo xenograft study revealed tissue-specific bio-distribution of Re-188 Herceptin, which results in significant decrease of tumor growth and correlated changes of apoptosis-related proteins. Moreover, the level of p35 protein, which responds for cancer cell survival and invasion by activating Cdk5, dramatically decreased after Re-188 Herceptin treatment.

Our data indicate that Re-188 labeled Herceptin effectively inhibited the growth of DU145 cells compared to the Herceptin- and Re-188-treated cohorts. This implies that targeting Her2 by both radio- and immuno- therapy might be a potential strategy for treating patients with castration-resistant prostate cancer.
其他識別: U0005-1007201313384500
Appears in Collections:生命科學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.