Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20276
標題: 探討雄激素累積與雄激素受體活化在Anastrozole抑制乳癌細胞生長的反應中扮演的角色
Investigation of androgen accumulation and androgen receptor activation in Anastrozole-induced growth inhibition of breast cancer cells
作者: 白家明
Pai, Chia-Ming
關鍵字: 雌激素受體;Breast cancer;芳香酶抑制劑;Bcl-2;cyclin D1;雄激素受體;細胞增生;ER;Aromatase inhibitor;Bcl-2;cyclin D1;AR;cell proliferation
出版社: 生命科學系所
引用: 1 Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J Clin 63, 11-30, doi:10.3322/caac.21166 (2013). 2 Barnes, N. L., Ooi, J. L., Yarnold, J. R. & Bundred, N. J. Ductal carcinoma in situ of the breast. Bmj 344, e797, doi:10.1136/bmj.e797 (2012). 3 Lakhani, S. R. et al. The management of lobular carcinoma in situ (LCIS). Is LCIS the same as ductal carcinoma in situ (DCIS)? Eur J Cancer 42, 2205-2211, doi:10.1016/j.ejca.2006.03.019 (2006). 4 Hussain, M. & Cunnick, G. H. Management of lobular carcinoma in-situ and atypical lobular hyperplasia of the breast--a review. Eur J Surg Oncol 37, 279-289, doi:10.1016/j.ejso.2011.01.009 (2011). 5 Hanby, A. M. & Hughes, T. A. In situ and invasive lobular neoplasia of the breast. Histopathology 52, 58-66, doi:10.1111/j.1365-2559.2007.02891.x (2008). 6 Le-Petross, H., Uppendahl, L. & Stafford, J. Sonographic features of inflammatory breast cancer. Semin Roentgenol 46, 275-279, doi:10.1053/j.ro.2011.04.003 (2011). 7 Prat, A. & Perou, C. M. Mammary development meets cancer genomics. Nat Med 15, 842-844, doi:10.1038/nm0809-842 (2009). 8 Sims, A. H., Howell, A., Howell, S. J. & Clarke, R. B. Origins of breast cancer subtypes and therapeutic implications. Nat Clin Pract Oncol 4, 516-525, doi:10.1038/ncponc0908 (2007). 9 Tran, B. & Bedard, P. L. Luminal-B breast cancer and novel therapeutic targets. Breast Cancer Res 13, 221, doi:10.1186/bcr2904 (2011). 10 Thakkar, J. P. & Mehta, D. G. A review of an unfavorable subset of breast cancer: estrogen receptor positive progesterone receptor negative. Oncologist 16, 276-285, doi:10.1634/theoncologist.2010-0302 (2011). 11 Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177-182 (1987). 12 Sotiriou, C. & Pusztai, L. Gene-expression signatures in breast cancer. N Engl J Med 360, 790-800, doi:10.1056/NEJMra0801289 (2009). 13 Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747-752, doi:10.1038/35021093 (2000). 14 Prat, A. & Perou, C. M. Deconstructing the molecular portraits of breast cancer. Mol Oncol 5, 5-23, doi:10.1016/j.molonc.2010.11.003 (2011). 15 Prat, A. et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12, R68, doi:10.1186/bcr2635 (2010). 16 Harrell, J. C. et al. Genomic analysis identifies unique signatures predictive of brain, lung, and liver relapse. Breast Cancer Res Treat 132, 523-535, doi:10.1007/s10549-011-1619-7 (2012). 17 Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98, 10869-10874, doi:10.1073/pnas.191367098 (2001). 18 Santana-Davila, R. & Perez, E. A. Treatment options for patients with triple-negative breast cancer. J Hematol Oncol 3, 42, doi:10.1186/1756-8722-3-42 (2010). 19 MacGregor, J. I. & Jordan, V. C. Basic guide to the mechanisms of antiestrogen action. Pharmacol Rev 50, 151-196 (1998). 20 Couse, J. F. & Korach, K. S. Estrogen receptor null mice: what have we learned and where will they lead us? Endocr Rev 20, 358-417 (1999). 21 Santen, R. J. et al. Enzymatic control of estrogen production in human breast cancer: relative significance of aromatase versus sulfatase pathways. Ann N Y Acad Sci 464, 126-137 (1986). 22 Gruber, C. J., Tschugguel, W., Schneeberger, C. & Huber, J. C. Production and actions of estrogens. N Engl J Med 346, 340-352, doi:10.1056/NEJMra000471 (2002). 23 Clemons, M. & Goss, P. Estrogen and the risk of breast cancer. N Engl J Med 344, 276-285, doi:10.1056/NEJM200101253440407 (2001). 24 Evans, R. M. The steroid and thyroid hormone receptor superfamily. Science 240, 889-895 (1988). 25 Ribeiro, R. C., Kushner, P. J. & Baxter, J. D. The nuclear hormone receptor gene superfamily. Annual review of medicine 46, 443-453, doi:10.1146/annurev.med.46.1.443 (1995). 26 Mueller, S. O. & Korach, K. S. Estrogen receptors and endocrine diseases: lessons from estrogen receptor knockout mice. Current opinion in pharmacology 1, 613-619 (2001). 27 Luconi, M., Forti, G. & Baldi, E. Genomic and nongenomic effects of estrogens: molecular mechanisms of action and clinical implications for male reproduction. The Journal of steroid biochemistry and molecular biology 80, 369-381 (2002). 28 Menasce, L. P., White, G. R., Harrison, C. J. & Boyle, J. M. Localization of the estrogen receptor locus (ESR) to chromosome 6q25.1 by FISH and a simple post-FISH banding technique. Genomics 17, 263-265, doi:10.1006/geno.1993.1320 (1993). 29 Mosselman, S., Polman, J. & Dijkema, R. ER beta: identification and characterization of a novel human estrogen receptor. FEBS Lett 392, 49-53 (1996). 30 Kuiper, G. G. et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138, 863-870 (1997). 31 Bai, Z. & Gust, R. Breast cancer, estrogen receptor and ligands. Archiv der Pharmazie 342, 133-149, doi:10.1002/ardp.200800174 (2009). 32 Leclercq, G. Molecular forms of the estrogen receptor in breast cancer. The Journal of steroid biochemistry and molecular biology 80, 259-272 (2002). 33 Feigelson, H. S. & Henderson, B. E. Estrogens and breast cancer. Carcinogenesis 17, 2279-2284 (1996). 34 Hall, J. M., Couse, J. F. & Korach, K. S. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J Biol Chem 276, 36869-36872, doi:10.1074/jbc.R100029200 (2001). 35 Deroo, B. J. & Korach, K. S. Estrogen receptors and human disease. The Journal of clinical investigation 116, 561-570, doi:10.1172/jci27987 (2006). 36 Heldring, N. et al. Estrogen receptors: how do they signal and what are their targets. Physiological reviews 87, 905-931, doi:10.1152/physrev.00026.2006 (2007). 37 Kato, S. et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270, 1491-1494 (1995). 38 Joel, P. B., Traish, A. M. & Lannigan, D. A. Estradiol-induced phosphorylation of serine 118 in the estrogen receptor is independent of p42/p44 mitogen-activated protein kinase. J Biol Chem 273, 13317-13323 (1998). 39 Kushner, P. J. et al. Estrogen receptor pathways to AP-1. The Journal of steroid biochemistry and molecular biology 74, 311-317 (2000). 40 Jakacka, M. et al. An estrogen receptor (ER)alpha deoxyribonucleic acid-binding domain knock-in mutation provides evidence for nonclassical ER pathway signaling in vivo. Mol Endocrinol 16, 2188-2201 (2002). 41 McDevitt, M. A. et al. Estrogen response element-independent estrogen receptor (ER)-alpha signaling does not rescue sexual behavior but restores normal testosterone secretion in male ERalpha knockout mice. Endocrinology 148, 5288-5294, doi:10.1210/en.2007-0673 (2007). 42 Kousteni, S. et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719-730 (2001). 43 Ascenzi, P., Bocedi, A. & Marino, M. Structure-function relationship of estrogen receptor alpha and beta: impact on human health. Mol Aspects Med 27, 299-402, doi:10.1016/j.mam.2006.07.001 (2006). 44 Lee, M. L. et al. Induction of thyroid papillary carcinoma cell proliferation by estrogen is associated with an altered expression of Bcl-xL. Cancer J 11, 113-121 (2005). 45 Pandini, G. et al. 17beta-estradiol up-regulates the insulin-like growth factor receptor through a nongenotropic pathway in prostate cancer cells. Cancer Res 67, 8932-8941, doi:10.1158/0008-5472.can-06-4814 (2007). 46 Manole, D., Schildknecht, B., Gosnell, B., Adams, E. & Derwahl, M. Estrogen promotes growth of human thyroid tumor cells by different molecular mechanisms. J Clin Endocrinol Metab 86, 1072-1077 (2001). 47 Yue, W. et al. Tamoxifen versus aromatase inhibitors for breast cancer prevention. Clin Cancer Res 11, 925s-930s (2005). 48 Preston-Martin, S., Pike, M. C., Ross, R. K., Jones, P. A. & Henderson, B. E. Increased cell division as a cause of human cancer. Cancer Res 50, 7415-7421 (1990). 49 Santen, R. J. To block estrogen''s synthesis or action: that is the question. J Clin Endocrinol Metab 87, 3007-3012 (2002). 50 Cavalieri, E., Frenkel, K., Liehr, J. G., Rogan, E. & Roy, D. Estrogens as endogenous genotoxic agents--DNA adducts and mutations. J Natl Cancer Inst Monogr, 75-93 (2000). 51 Liehr, J. G. Is estradiol a genotoxic mutagenic carcinogen? Endocr Rev 21, 40-54 (2000). 52 Tanos, T., Rojo, L. J., Echeverria, P. & Brisken, C. ER and PR signaling nodes during mammary gland development. Breast Cancer Res 14, 210, doi:10.1186/bcr3166 (2012). 53 Stingl, J. Estrogen and progesterone in normal mammary gland development and in cancer. Horm Cancer 2, 85-90, doi:10.1007/s12672-010-0055-1 (2011). 54 Brisken, C. & O''Malley, B. Hormone action in the mammary gland. Cold Spring Harb Perspect Biol 2, a003178, doi:10.1101/cshperspect.a003178 (2010). 55 Parl, F. F., Schmidt, B. P., Dupont, W. D. & Wagner, R. K. Prognostic significance of estrogen receptor status in breast cancer in relation to tumor stage, axillary node metastasis, and histopathologic grading. Cancer 54, 2237-2242 (1984). 56 Cianfrocca, M. & Goldstein, L. J. Prognostic and predictive factors in early-stage breast cancer. Oncologist 9, 606-616, doi:10.1634/theoncologist.9-6-606 (2004). 57 Hilsenbeck, S. G. et al. Time-dependence of hazard ratios for prognostic factors in primary breast cancer. Breast Cancer Res Treat 52, 227-237 (1998). 58 Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687-1717, doi:10.1016/s0140-6736(05)66544-0 (2005). 59 Jordan, V. C. Tamoxifen (ICI46,474) as a targeted therapy to treat and prevent breast cancer. Br J Pharmacol 147 Suppl 1, S269-276, doi:10.1038/sj.bjp.0706399 (2006). 60 Mouridsen, H. et al. Letrozole therapy alone or in sequence with tamoxifen in women with breast cancer. N Engl J Med 361, 766-776, doi:10.1056/NEJMoa0810818 (2009). 61 Ali, S. & Coombes, R. C. Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2, 101-112, doi:10.1038/nrc721 (2002). 62 Renoir, J. M. Estradiol receptors in breast cancer cells: associated co-factors as targets for new therapeutic approaches. Steroids 77, 1249-1261, doi:10.1016/j.steroids.2012.07.019 (2012). 63 Johnston, S. R. & Dowsett, M. Aromatase inhibitors for breast cancer: lessons from the laboratory. Nat Rev Cancer 3, 821-831, doi:10.1038/nrc1211 (2003). 64 Cole, P. A. & Robinson, C. H. Mechanism and inhibition of cytochrome P-450 aromatase. J Med Chem 33, 2933-2942 (1990). 65 Meunier, B., de Visser, S. P. & Shaik, S. Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes. Chem Rev 104, 3947-3980, doi:10.1021/cr020443g (2004). 66 Hickey, G. J. et al. Hormonal regulation, tissue distribution, and content of aromatase cytochrome P450 messenger ribonucleic acid and enzyme in rat ovarian follicles and corpora lutea: relationship to estradiol biosynthesis. Endocrinology 122, 1426-1436 (1988). 67 Hanukoglu, I. Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis. The Journal of steroid biochemistry and molecular biology 43, 779-804, doi:10.1016/0960-0760(92)90307-5 (1992). 68 Brueggemeier, R. W., Hackett, J. C. & Diaz-Cruz, E. S. Aromatase inhibitors in the treatment of breast cancer. Endocr Rev 26, 331-345, doi:10.1210/er.2004-0015 (2005). 69 Conley, A. & Hinshelwood, M. Mammalian aromatases. Reproduction 121, 685-695 (2001). 70 Silva, M. C. et al. Intratumoral aromatase as a prognostic factor in human breast carcinoma. Cancer Res 49, 2588-2591 (1989). 71 Ryde, C. M., Nicholls, J. E. & Dowsett, M. Steroid and growth factor modulation of aromatase activity in MCF7 and T47D breast carcinoma cell lines. Cancer Res 52, 1411-1415 (1992). 72 Sikora, M. J. et al. The androgen metabolite 5alpha-androstane-3beta,17beta-diol (3betaAdiol) induces breast cancer growth via estrogen receptor: implications for aromatase inhibitor resistance. Breast Cancer Res Treat 115, 289-296, doi:10.1007/s10549-008-0080-8 (2009). 73 Gupta, A. et al. Efficacy and mechanism of action of Proellex, an antiprogestin in aromatase overexpressing and Letrozole resistant T47D breast cancer cells. The Journal of steroid biochemistry and molecular biology 133, 30-42, doi:10.1016/j.jsbmb.2012.08.004 (2013). 74 Su, B., Diaz-Cruz, E. S., Landini, S. & Brueggemeier, R. W. Suppression of aromatase in human breast cells by a cyclooxygenase-2 inhibitor and its analog involves multiple mechanisms independent of cyclooxygenase-2 inhibition. Steroids 73, 104-111, doi:10.1016/j.steroids.2007.09.011 (2008). 75 Hong, Y. & Chen, S. Aromatase inhibitors: structural features and biochemical characterization. Ann N Y Acad Sci 1089, 237-251, doi:10.1196/annals.1386.022 (2006). 76 di Salle, E. et al. Exemestane (FCE 24304), a new steroidal aromatase inhibitor. The Journal of steroid biochemistry and molecular biology 43, 137-143 (1992). 77 Hong, Y. et al. Molecular basis for the aromatization reaction and exemestane-mediated irreversible inhibition of human aromatase. Mol Endocrinol 21, 401-414, doi:10.1210/me.2006-0281 (2007). 78 Miller, W. R. et al. Aromatase inhibitors: are there differences between steroidal and nonsteroidal aromatase inhibitors and do they matter? Oncologist 13, 829-837, doi:10.1634/theoncologist.2008-0055 (2008). 79 Wang, X. & Chen, S. Aromatase destabilizer: novel action of exemestane, a food and drug administration-approved aromatase inhibitor. Cancer Res 66, 10281-10286, doi:10.1158/0008-5472.can-06-2134 (2006). 80 Jost, A. Hormonal factors in the sex differentiation of the mammalian foetus. Philos Trans R Soc Lond B Biol Sci 259, 119-130 (1970). 81 Hughes, I. A. Minireview: sex differentiation. Endocrinology 142, 3281-3287 (2001). 82 Rabasseda, X. Dutasteride: a potent dual inhibitor of 5-alpha-reductase for benign prostatic hyperplasia. Drugs Today (Barc) 40, 649-661 (2004). 83 Luu-The, V., Belanger, A. & Labrie, F. Androgen biosynthetic pathways in the human prostate. Best Pract Res Clin Endocrinol Metab 22, 207-221, doi:10.1016/j.beem.2008.01.008 (2008). 84 Luu-The, V. & Labrie, F. The intracrine sex steroid biosynthesis pathways. Prog Brain Res 181, 177-192, doi:10.1016/S0079-6123(08)81010-2 (2010). 85 Labrie, F., Luu-The, V., Lin, S. X., Simard, J. & Labrie, C. Role of 17 beta-hydroxysteroid dehydrogenases in sex steroid formation in peripheral intracrine tissues. Trends Endocrinol Metab 11, 421-427 (2000). 86 Magoffin, D. A. Ovarian theca cell. Int J Biochem Cell Biol 37, 1344-1349, doi:10.1016/j.biocel.2005.01.016 (2005). 87 Vandenput, L. et al. Androgens and glucuronidated androgen metabolites are associated with metabolic risk factors in men. J Clin Endocrinol Metab 92, 4130-4137, doi:10.1210/jc.2007-0252 (2007). 88 Burger, H. G. Androgen production in women. Fertil Steril 77 Suppl 4, S3-5 (2002). 89 Morley, J. E. & Perry, H. M., 3rd. Androgens and women at the menopause and beyond. J Gerontol A Biol Sci Med Sci 58, M409-416 (2003). 90 McPhaul, M. J. Factors that mediate and modulate androgen action. J Investig Dermatol Symp Proc 8, 1-5, doi:10.1046/j.1523-1747.2003.12163.x (2003). 91 Wiebe, J. P. et al. The 4-pregnene and 5alpha-pregnane progesterone metabolites formed in nontumorous and tumorous breast tissue have opposite effects on breast cell proliferation and adhesion. Cancer Res 60, 936-943 (2000). 92 Burd, C. J., Morey, L. M. & Knudsen, K. E. Androgen receptor corepressors and prostate cancer. Endocr Relat Cancer 13, 979-994, doi:10.1677/erc.1.01115 (2006). 93 Feldman, B. J. & Feldman, D. The development of androgen-independent prostate cancer. Nat Rev Cancer 1, 34-45, doi:10.1038/35094009 (2001). 94 Zhou, Z. X., Kemppainen, J. A. & Wilson, E. M. Identification of three proline-directed phosphorylation sites in the human androgen receptor. Molecular endocrinology 9, 605-615 (1995). 95 Zhu, Z., Becklin, R. R., Desiderio, D. M. & Dalton, J. T. Identification of a novel phosphorylation site in human androgen receptor by mass spectrometry. Biochem Biophys Res Commun 284, 836-844, doi:10.1006/bbrc.2001.5030 (2001). 96 Gioeli, D. et al. Androgen receptor phosphorylation. Regulation and identification of the phosphorylation sites. J Biol Chem 277, 29304-29314, doi:10.1074/jbc.M204131200 (2002). 97 Kraus, S., Gioeli, D., Vomastek, T., Gordon, V. & Weber, M. J. Receptor for activated C kinase 1 (RACK1) and Src regulate the tyrosine phosphorylation and function of the androgen receptor. Cancer Res 66, 11047-11054, doi:10.1158/0008-5472.CAN-06-0596 (2006). 98 Guo, Z. et al. Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell 10, 309-319, doi:10.1016/j.ccr.2006.08.021 (2006). 99 Anbalagan, M., Huderson, B., Murphy, L. & Rowan, B. G. Post-translational modifications of nuclear receptors and human disease. Nucl Recept Signal 10, e001, doi:10.1621/nrs.10001 (2012). 100 Chen, S., Gulla, S., Cai, C. & Balk, S. P. Androgen receptor serine 81 phosphorylation mediates chromatin binding and transcriptional activation. J Biol Chem 287, 8571-8583, doi:10.1074/jbc.M111.325290 (2012). 101 Liu, S., Yuan, Y., Okumura, Y., Shinkai, N. & Yamauchi, H. Camptothecin disrupts androgen receptor signaling and suppresses prostate cancer cell growth. Biochem Biophys Res Commun 394, 297-302, doi:10.1016/j.bbrc.2010.02.164 (2010). 102 Chen, S., Xu, Y., Yuan, X., Bubley, G. J. & Balk, S. P. Androgen receptor phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase 1. Proc Natl Acad Sci U S A 103, 15969-15974, doi:10.1073/pnas.0604193103 (2006). 103 Hsu, F. N. et al. Regulation of androgen receptor and prostate cancer growth by cyclin-dependent kinase 5. J Biol Chem 286, 33141-33149, doi:10.1074/jbc.M111.252080 (2011). 104 Hsu, F. N., Yang, M. S., Lin, E., Tseng, C. F. & Lin, H. The significance of Her2 on androgen receptor protein stability in the transition of androgen requirement in prostate cancer cells. Am J Physiol Endocrinol Metab 300, E902-908, doi:10.1152/ajpendo.00610.2010 (2011). 105 Moinfar, F. et al. Androgen receptors frequently are expressed in breast carcinomas: potential relevance to new therapeutic strategies. Cancer 98, 703-711, doi:10.1002/cncr.11532 (2003). 106 He, J. et al. Prognostic value of androgen receptor expression in operable triple-negative breast cancer: a retrospective analysis based on a tissue microarray. Med Oncol 29, 406-410, doi:10.1007/s12032-011-9832-0 (2012). 107 Birrell, S. N., Butler, L. M., Harris, J. M., Buchanan, G. & Tilley, W. D. Disruption of androgen receptor signaling by synthetic progestins may increase risk of developing breast cancer. Faseb J 21, 2285-2293, doi:10.1096/fj.06-7518com (2007). 108 Liao, D. J. & Dickson, R. B. Roles of androgens in the development, growth, and carcinogenesis of the mammary gland. The Journal of steroid biochemistry and molecular biology 80, 175-189 (2002). 109 Birrell, S. N. et al. Androgens induce divergent proliferative responses in human breast cancer cell lines. The Journal of steroid biochemistry and molecular biology 52, 459-467 (1995). 110 Lapointe, J., Fournier, A., Richard, V. & Labrie, C. Androgens down-regulate bcl-2 protooncogene expression in ZR-75-1 human breast cancer cells. Endocrinology 140, 416-421 (1999). 111 Cops, E. J. et al. Antiproliferative actions of the synthetic androgen, mibolerone, in breast cancer cells are mediated by both androgen and progesterone receptors. The Journal of steroid biochemistry and molecular biology 110, 236-243, doi:10.1016/j.jsbmb.2007.10.014 (2008). 112 Lanzino, M. et al. Inhibition of cyclin D1 expression by androgen receptor in breast cancer cells--identification of a novel androgen response element. Nucleic Acids Res 38, 5351-5365, doi:10.1093/nar/gkq278 (2010). 113 Somboonporn, W. & Davis, S. R. Testosterone effects on the breast: implications for testosterone therapy for women. Endocr Rev 25, 374-388, doi:10.1210/er.2003-0016 (2004). 114 Takagi, K. et al. Increased intratumoral androgens in human breast carcinoma following aromatase inhibitor exemestane treatment. Endocr Relat Cancer 17, 415-430, doi:10.1677/erc-09-0257 (2010). 115 Bojar, H., Maar, K. & Staib, W. The endocrine background of human renal cell carcinoma. V. Binding of the highly potent androgen methyltrienolone (R 1881) by tumour cytosol. Urol Int 35, 154-160 (1980). 116 Henderson, I. C. & Piccart-Gebhart, M. J. The evolving role of aromatase inhibitors in adjuvant breast cancer therapy. Clin Breast Cancer 6, 206-215, doi:10.3816/CBC.2005.n.022 (2005). 117 Reid, G. et al. Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell 11, 695-707 (2003). 118 La Rosa, P., Pesiri, V., Marino, M. & Acconcia, F. 17beta-Estradiol-induced cell proliferation requires estrogen receptor (ER) alpha monoubiquitination. Cell Signal 23, 1128-1135, doi:10.1016/j.cellsig.2011.02.006 (2011). 119 Knudsen, K. E., Diehl, J. A., Haiman, C. A. & Knudsen, E. S. Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 25, 1620-1628, doi:10.1038/sj.onc.1209371 (2006). 120 Lippman, M., Bolan, G. & Huff, K. The effects of androgens and antiandrogens on hormone-responsive human breast cancer in long-term tissue culture. Cancer Res 36, 4610-4618 (1976). 121 Horwitz, K. B. & Freidenberg, G. R. Growth inhibition and increase of insulin receptors in antiestrogen-resistant T47DCO human breast cancer cells by progestins: implications for endocrine therapies. Cancer Res 45, 167-173 (1985). 122 Lin, H. Y. et al. Androgen-induced human breast cancer cell proliferation is mediated by discrete mechanisms in estrogen receptor-alpha-positive and -negative breast cancer cells. The Journal of steroid biochemistry and molecular biology 113, 182-188, doi:10.1016/j.jsbmb.2008.12.010 (2009). 123 Kendall, A. et al. Impact of estrogen deprivation on gene expression profiles of normal postmenopausal breast tissue in vivo. Cancer Epidemiol Biomarkers Prev 17, 855-863, doi:10.1158/1055-9965.epi-07-2718 (2008). 124 Lukas, J., Bartkova, J. & Bartek, J. Convergence of mitogenic signalling cascades from diverse classes of receptors at the cyclin D-cyclin-dependent kinase-pRb-controlled G1 checkpoint. Mol Cell Biol 16, 6917-6925 (1996). 125 Carroll, J. S., Prall, O. W., Musgrove, E. A. & Sutherland, R. L. A pure estrogen antagonist inhibits cyclin E-Cdk2 activity in MCF-7 breast cancer cells and induces accumulation of p130-E2F4 complexes characteristic of quiescence. J Biol Chem 275, 38221-38229, doi:10.1074/jbc.M004424200 (2000). 126 Liu, M. M. et al. Opposing action of estrogen receptors alpha and beta on cyclin D1 gene expression. J Biol Chem 277, 24353-24360, doi:10.1074/jbc.M201829200 (2002).
摘要: 
乳癌 (Breast cancer) 由乳房細胞異常增生所造成,為女性最容易罹患的癌症,根據美國癌症協會的統計資料顯示,乳癌在女性癌症致死率排名第二位僅次於肺癌。雌激素 (Estrogen) 與雌激素受體 (Estrogen receptor, ER),對於乳癌的生長 (Proliferation) 與發展 (Development) 扮演重要的角色。因此,針對雌激素作為一個攻擊的目標,將有助於治療乳癌。Anastrozole (ArimidexTM) 屬於芳香酶抑制劑 (Aromatase inhibitor) 的一類,透過抑制芳香酶 (Aromatase) 的活性阻斷雄激素 (Androgen) 轉換為雌激素,進而導致雌激素的濃度下降與雄激素的累積。臨床實驗顯示,乳癌患者給予芳香酶抑制劑 (Exemestens) 治療後,會使腫瘤內的雄激素增加。此外許多文獻顯示,雄激素在乳癌細胞中扮演抑制的角色,可透過降低抗凋亡蛋白Bcl-2的表現進而促使細胞凋亡 (Apoptosis) 的增加或降低細胞週期 (Cell cycle) 調節蛋白cyclin D1的表現進而影響細胞週期抑制細胞生長。顯示雄激素與雄激素受體 (Androgen receptor) 在芳香酶抑制劑抑制乳癌生長中可能扮演重要的角色。因此,本論文研究目的在於探討雄激素與其受體在芳香酶抑制劑 (Anastrozole) 抑制乳癌細胞生長的反應中扮演的角色。研究結果發現,Anastrozole能夠抑制ER+ (Estrogen receptor positive) T-47D、MCF-7 乳癌細胞生長,對於ER- (Estrogen receptor negative) MDA-MB-231、MDA-MB-453、HS578T無影響。同時利用,人工合成雄激素R1881模擬雄激素累積,也能抑制T-47D細胞的生長。進一步實驗發現,Anastrozole能促進T-47D中雄激素 (Testosterone) 濃度上升,也能使AR 與p-S81-AR蛋白質表現增加。同時,Anastrozole也能增加AR進入細胞核中並增加其轉錄活性。此外藉由AR的拮抗劑Casodex阻斷AR,具有逆轉Anastrozole抑制T-47D細胞生長的作用。透過上述研究結果,證實Anastrozole抑制T-47D乳癌細胞生長是透過增加AR蛋白質的表現與活化。進一步我們發現Anastrozole能降低細胞週期調節蛋白cyclin D1表現使細胞週期停滯於G0/G1期,同時也能降低抗凋亡蛋白Bcl-2的表現促使細胞凋亡的發生,進而抑制T-47D細胞生長。綜合上述研究成果,我們發現一個芳香酶抑制劑治療乳癌的新機制,Anastrozole可透過促進AR的表現與活化,同時也能誘導細胞週期停滯於G0/G1期與誘發細胞凋亡,進而抑制乳癌細胞生長。經由以上研究結果,希望這個發現對於未來乳癌的診斷與治療有所貢獻。

Breast cancer is the most prevalent cancer in women. The statistical information from the American Cancer Society indicates that breast cancer is the second leading cause of death in all cancers among women. Estrogen and estrogen receptor play important roles in the growth and development of breast cancer. Therefore, targeting estrogen production is a useful strategy to treat breast cancer. Anastrozole is one type of aromatase inhibitors which can inhibit the conversion of androgen to estrogen. Therefore, the level of estrogen drops and that of androgen accumulates. According to clinical evidence, aromatase inhibitor (Exemestane) could increase intratumoral androgen in human breast carcinoma. Several lines of evidence indicate that androgen exerts a direct inhibitory effect on the proliferation through down-regulating the expression of the anti-apoptotic protein Bcl-2 or cell cycle regulated protein cyclin D1 in human breast cancer cells. It suggests that androgen and its receptor play an important role in inhibiting proliferation of breast cancer cells by aromatase inhibition. Our hypothesis is that androgen might be accumulated after Anastrozole treatment and decreased proliferation of breast cancer cells. Our results show that Anastrozole decreased cell proliferation of estrogen receptor positive T-47D cells and MCF-7 cells, but not estrogen receptor negative MDA-MB-231, MDA-MB-453, and HS578T cells. Administration of synthetic androgen R1881 to mimic androgen accumulation also decreased the proliferation of T-47D cells. In addition, we found that Anastrozole increased cellular testosterone levels of T-47D cells and the levels of androgen receptor protein and S81 phosphorylation were increased. Anastrozole promoted AR translocation into the nucleus of T-47D cells evaluating by fractionation of cellular proteins and immunofluorescent staining, and AR transcription activity was subsequently increased. Moreover, Casodex (AR inhibitor) can reverse Anastrozole-suppressed proliferation of T-47D cells. Altogether, our results indicate that Anastrozole might inhibit T-47D cell proliferation through increasing AR transactivation. Furthermore, Anastrozole decreased the expression of cell cycle regulated protein cyclin D1and cell cycle of T47D was arrested in G1 phase detected by flow cytometry. On the other hand, Anastrozole also decreased the expression of anti-apoptotic protein Bcl-2 and apoptosis of T47D cells was increased which was evaluated by TUNEL assay. In conclusion, our data indicate that Anastrozole might inhibit proliferation of breast cancer cells through AR activation. This finding provides a new mechanism by which aromatase inhibitor reduces breast cancer cell growth. We hope these findings can contribute to diagnosis and treatment of breast cancer in the future.
URI: http://hdl.handle.net/11455/20276
其他識別: U0005-2407201310451600
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.