Please use this identifier to cite or link to this item:
標題: 攝食沉積物對溪流型蝌蚪生長與行為之影響
Effects of Sediment Ingestion on Growth and Behavior of Tadpoles in a Lotic Habitat
作者: 王怡蓁
Wang, Yi-Chen
關鍵字: 梭德氏赤蛙;Rana sauteri;攝食沉積物;同化效率;臨界耐受流速;sediment ingestion;assimilation efficiency;critical velocity
出版社: 生命科學系所
引用: 于淑芬。2008。武陵地區水生昆蟲對石附生藻類影響之研究。國立中興大學生命科學研究所博士論文。 吳姿儀。2010。以動態模式探討流量對武陵溪流石附生藻生物量之影響。國立中興大學生命科學研究所碩士論文。 吳聲海、林幸助、王筱雯、官文惠、邵廣昭、孫元勳、郭美華、曾晴賢、楊正澤、葉昭憲。2004-2012。武陵地區溪流生態系長期監測暨整合研究。內政部營建署雪霸國家公園管理處。 周文豪。1997。臺灣無尾類蝌蚪之形態、分類與棲境區隔。東海大學生物學系研究所博士論文。 林幸助、陳建宏、鄭佾展、蘇美如、林良瑾。2007。武陵地區長期生態監測暨生態模式建立成果報告-藻類、資料整合分析與生態模式建構。內政部營建署雪霸國家公園管理處。 張文宏。2007。武陵地區三種溪流蛙類 (盤古蟾蜍、斯文豪氏赤蛙與梭德氏赤蛙) 之食性研究。國立中興大學生命科學研究所碩士論文。 溫珮珍。2005。武陵地區水溫與營養鹽添加對溪流淺流區石附生藻類之影響。國立中興大學生命科學研究所碩士論文。 葉昭憲、黃立文。2008。武陵地區長期生態監測暨生態模式建立成果報告-水文與物理棲地研究。內政部營建署雪霸國家公園管理處。 Ahlgren, M.O., and Bowen, S.B. (1991). Growth and survival of tadpoles (Bufo americanus) fed amorphous detritus derived from natural waters. Hydrobiologia 218: 49–51. Akers, E.C., Taylor, C.M., and Altig, R. (2008). Effects of clay–associated organic material on the growth of Hyla chrysoscelis tadpoles. Journal of Herpetology 42: 408–410. Alexander, R. (1966). Physical aspects of swimbladder function. Biological Reviews 41: 141–176. Altig, R., and Johnston, G.F. (1989). Guilds of anuran larvae: relationships among developmental modes, morphologies, and habitats. Herpetological Monographs 1989: 81–109. Altig, R., and Kelly, J.P. (1974). Indices of feeding in anuran tadpoles as indicated by gut characteristics. Herpetologica 30: 200–203. Altig, R., and McDearman, W. (1975). Percent assimilation and clearance times of five anuran tadpoles. Herpetologica 1975: 67–69. Altig, R., Whiles, M.R., and Taylor, C.L. (2007). What do tadpoles really eat? Assessing the trophic status of an understudied and imperiled group of consumers in freshwater habitats. Freshwater Biology 52: 386–395. Altig, R., Kelly, J.P., Wells, M., and Phillips, J. (1975). Digestive enzymes of seven species of anuran tadpoles. Herpetologica 31: 104–108. Brett, J.R. (1964). The respiratory metabolism and swimming performance of young sockeye salmon. Journal of the Fisheries Board of Canada 21: 1183–1226. Bruce, R.C., Beachy, C.K., Lenzo, P.G., Pronych, S.P., and Wassersug, R.J. (1994). Effects of lung reduction on rheotactic performance in amphibian larvae. Journal of Experimental Zoology 268: 377–380. Burkhead, N.M., and Jelks, H.L. (2001). Effects of suspended sediment on the reproductive success of the tricolor shiner, a crevice-spawning minnow.Transactions of the American Fisheries Society 130: 959–968. Chou, W.H., and Lin, J.Y. (1997). Geographical variations of Rana sauteri (Anura: Ranidae) in Taiwan. Zoological Studies 36: 201–221. Colletti, P.J., Blinn, W., Pickart, A., and Wagner, V.T. (1987). Influence of different densities of the mayfly grazer Heptagenia criddlei on lotic diatom communities. Journal of the North American Benthological Society 6: 270–280. Corn, P.S., and Bury, R.B. (1989). Logging in western Oregon: Responses of headwater habitats and stream amphibians. Forest Ecology and Management 29: 39–57. Fejtek, M., Souza, K., Neff, A., and Wassersug, R. (1998). Swimming kinematics and respiratory behaviour of Xenopus laevis larvae raised in altered gravity. Journal of Experimental Biology 201: 1917–1926. Feminella, J.W., and Hawkins, C.P. (1995). Interactions between stream herbivores and periphyton: a quantitative analysis of past experiments. Journal of the North American Benthological Society 14: 465–509. Flecker, A.S. (1996). Ecosystem engineering by a dominant detritivore in a diverse tropical stream. Ecology 77: 1845–1854. Flecker, A.S., Feifarek, B.P., and Taylor, B.W. (1999). Ecosystem engineering by a tropical tadpole: Density-dependent effects on habitat structure and larval growth rates. Copeia 1999: 495–500. Garnier, J.H. (1883). The mink or hoosier frog. The American Naturalist 17: 945–954. Gee, J.H., and Rondeau, S.L. (2012). Strategies used by tadpoles to optimize buoyancy in different habitats. Herpetologica 68: 3–13. Gee, J.H., and Waldick, R.C. (1995). Ontogenetic buoyancy changes and hydrostatic control in larval anurans. Copeia 1995: 861–870. Gillespie, G.R. (2002). Impacts of sediment loads, tadpole density, and food type on the growth and development of tadpoles of the spotted tree frog Litoria spenceri: An in-stream experiment. Biological Conservation 106: 141–150. Gosner, K.L. (1960). A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183–190. Grosjean, S., Randrianiaina, R.D., Straus, A., and Vences, M. (2011). Sand-eating tadpoles in Madagascar: Morphology and ecology of the unique larvae of the treefrog Boophis picturatus. Salamandra 47: 63–76. Haas, A., and Richards, S.J. (1998). Correlations of cranial morphology, ecology, and evolution in Australian suctorial tadpoles of the genera Litoria and Nyctimystes (Amphibia: Anura: Hylidae: Pelodryadinae). Journal of Morphology 238: 109–141. Haas, A., Hertwig, S., and Das, I. (2006). Extreme tadpoles: The morphology of the fossorial megophryid larva, Leptobrachella mjobergi. Zoology 109: 26–42. Hailey, A., Sookoo, N., Mohammed, A., and Khan, A. (2006). Factors affecting tadpole growth: Development of a rearing system for the Neotropical leptodactylid Physalaemus pustulosus for ecotoxicological studies. Applied Herpetology 3: 111–128. Handrigan, G.R., Haas, A., and Wassersug, R.J. (2007). Bony‐tailed tadpoles: The development of supernumerary caudal vertebrae in larval megophryids (Anura). Evolution and Development 9: 190–202. Jenssen, T.A. (1967). Food habits of the green frog, Rana clamitans, before and during metamorphosis. Copeia 1967: 214–218. Jones, C.G., Lawton, J.H., and Shachak, M. (1994). Organisms as ecosystem engineers. Oikos 1994: 373–386. Kupferberg, S.J. (1997). The role of larval diet in anuran metamorphosis. American Zoologist 37: 146–159. Kupferberg, S.J., Lind, A.J., Thill, V., and Yarnell, S.M. (2011). Water velocity tolerance in tadpoles of the foothill yellow-legged frog (Rana boylii): Swimming performance, growth, and survival. Copeia 2011: 141–152. Kupferberg, S.J., Marks, J.C., and Power, M.E. (1994). Effects of variation in natural algal and detrital diets on larval anuran (Hyla regilla) life-history traits.Copeia 1994: 446–457. Lai, S.J., Kam, Y.C., Hsu, F.H., and Lin, Y.S. (2002). Elevational effects on the growth and development of tadpoles of Sauter''s frog Rana sauteri Boulenger in Taiwan. Acta Zoologica Taiwanica 13: 11–20. McCormick, P.V., and Stevenson, R.J. (1991). Mechanisms of benthic algal succession in lotic environments. Ecology 72: 1835–1848. Nathan, J.M., and James, V.G. (1972). The role of protozoa in the nutrition of tadpoles. Copeia 1972: 669–679. Parsons, T.R., Maita, Y., and Lalli, C.M. (1984). Manual of Chemical And Biological Methods for Seawater Analysis. Pergamon Press Inc, New York, USA. Power, M.E. (1990). Resource enhancement by indirect effects of grazers: Armored catfish, algae, and sediment. Ecology 71: 897–904. Pringle, C.M., Blake, G.A., Covich, A.P., Buzby, K.M., and Finley, A. (1993). Effects of omnivorous shrimp in a montane tropical stream: Sediment removal, disturbance of sessile invertebrates and enhancement of understory algal biomass. Oecologia 93: 1–11. Ranvestel, A.W., Lips, K.R., Pringle, C.M., Whiles, M.R., and Bixby, R.J. (2004). Neotropical tadpoles influence stream benthos: Evidence for the ecological consequences of decline in amphibian populations. Freshwater Biology 49: 274–285. Regester, K.J., Whiles, M.R., and Lips, K.R. (2008). Variation in the trophic basis of production and energy flow associated with emergence of larval salamander assemblages from forest ponds. Freshwater Biology 53: 1754–1767. Richards, S.J. (2002). Influence of flow regime on habitat selection by tadpoles in an Australian rainforest stream. Journal of Zoology 257: 273–279. Rondeau, S.L. (2000). Variables Determining Buoyancy in Juvenile Mink Frogs, Rana septentrionalis, with Comparisons to Boreal Chorus Frogs, Pseudacris triseriata maculata, and Wood Frogs, Rana sylvatica. M.S. thesis. University of Manitoba, Winnipeg, Manitoba Rondeau, S.L., and Gee, J.H. (2005). Larval anurans adjust buoyancy in response to substrate ingestion. Copeia 2005: 188–195. Ryan, P.A. (1991). Environmental effects of sediment on New Zealand streams: a review. New Zealand Journal of Marine and Freshwater Research 25: 207–221. Skelly, D.K., and Golon, J. (2003). Assimilation of natural benthic substrates by two species of tadpoles. Herpetologica 59: 37–42. Solomon, C.T., Flecker, A.S., and Taylor, B.W. (2004). Testing the role of sediment-mediated interactions between tadpoles and armored catfish in a Neotropical stream. Copeia 2004: 610–616. Taylor, M.A. (1993). Stomach stones for feeding or buoyancy? The occurrence and function of gastroliths in marine tetrapods. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 341: 163–175. Tu, M.C., Chu, C.W., and Lue, K.Y. (1999). Specific gravity and mechanisms for its control in tadpoles of three anuran species from different water strata. Zoological Studies 38: 76–81. Van Buskirk, J., and McCollum, S.A. (2000). Influence of tail shape on tadpole swimming performance. Journal of Experimental Biology 203: 2149–2158. Wassersug, R.J., and Feder, M.E. (1983). The effects of aquatic oxygen concentration, body size and respiratory behaviour on the stamina of obligate aquatic (Bufo americanus) and facultative air-breathing (Xenopus laevis and Rana berlandieri) anuran larvae. Journal of Experimental Biology 105: 173–190. Wassersug, R.J., and Hoff, K. (1985). The kinematics of swimming in anuran larvae. Journal of Experimental Biology 119: 1–30. Waters, T.F. (1995). Sediment in streams: Sources, biological effects, and control. American Fisheries Society Monograph, Bethesda, Maryland. Welsh Jr, H.H., and Ollivier, L.M. (1998). Stream amphibians as indicators of ecosystem stress: A case study from California''s redwoods. Ecological Applications 8: 1118–1132. Wilson, R.S., Kraft, P.G., and van Damme, R. (2005). Predator‐specific changes in the morphology and swimming performance of larval Rana lessonae. Functional Ecology 19: 238–244. Wood, P.J., and Armitage, P.D. (1997). Biological effects of fine sediment in the lotic environment. Environmental Management 21: 203–217. Wood, S.L.R. (2007). Tadpole-sediment Interactions of The Western Toad, Bufo boreas, in a Temperate-lentic System. M.S. thesis. University of British Columbia. Wood, S.L.R., and Richardson, J.S. (2009). Impact of sediment and nutrient inputs on growth and survival of tadpoles of the western toad. Freshwater Biology 54: 1120–1134. Wood, S.L.R., and Richardson, J.S. (2010). Evidence for ecosystem engineering in a lentic habitat by tadpoles of the western toad. Aquatic Sciences 72: 499–508.
蝌蚪在攝食過程中常吞入大量砂粒,解剖消化道亦證實蝌蚪有此攝食沉積物(sediment ingestion)現象。前人研究指出不同棲地蝌蚪食砂後的發育狀態具有差異,但對象多為緩流與靜水域蝌蚪。本研究以武陵七家灣溪的梭德氏赤蛙(Rana sauteri)蝌蚪為例,探討食砂現象是否影響溪流型蝌蚪的生長與行為。我將蝌蚪飼於溪流圍籠中,分為無砂組與有砂組,每處理6重複,檢視四週後蝌蚪發育狀況;並以模擬河道測試蝌蚪所能耐受的臨界流速(critical velocity)。實驗結果顯示:食砂蝌蚪的成長、發育速率與同化效率(assimilation efficiency)皆下降,但能承受的臨界耐受流速增加;野外採集亦發現:流速越快河段,蝌蚪體內含砂量越高。梭德氏赤蛙蝌蚪在攝食沉積物後,能增加比重,提升抵抗水流、維持位置的能力;但食砂的代價是減少營養攝取,導致蝌蚪生長遲緩。

Tadpoles are known to swallow sediment in large quantities while feeding, and can be verified by examining gut contents. The effects of sediment ingestion on tadpole growth and development vary. However, most of studies focused on tadpoles in lentic habitats. I used the tadpoles of Rana sauteri, a species adapted to stream habitats, to understand whether sediment ingestion in tadpoles affect tadpole growth and behavior. I conducted stream enclosure experiments to compare tadpole growth under two sediment regimes, sediment addition vs. control treatment without sediment. In addition, I used a small swimming flume to quantify the critical velocity of tadpoles against water flow. Tadpoles growing with the presence of sands contained more inorganic components in the body than the controlled group, and had significantly lower growth, development rate, and assimilation efficiency. However, tadpoles ingesting more sediments can withstand higher water speed. The amount of inorganic matter is positively correlated to the stream speed in wild-caught tadpoles. The results suggested Rana sauteri tadpoles could increase their specific gravity through sediment ingestion so as to resist strong flow in lotic environments. However, the cost of sediment ingestion is reduced nutrient absorption, leading to slow growth rate.
其他識別: U0005-1907201316260800
Appears in Collections:生命科學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.