Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2032
標題: 金屬-溶液-場效電晶體技術研究
Development of a Metal-Solution Field Effect Transistor ( MEFET)
作者: 余敏昌
關鍵字: nano;奈米;Effect;Transistor;電晶體;葉綠體
出版社: 機械工程學系所
引用: [1]http://designer.mech.yzu.edu.tw/article/articles/(2005-06-02).pdf [2]李德龍, 李明威, “ 紫質衍生物-BPP染料於染敏太陽能電池之應用及其光學特性,” 國立中興大學物理學研究所碩士學位論文, 民 96。 [3]陳維正, 王國禎, “ 仿葉綠體機制之奈米光電池技術研究,” 國立中興大學機械工程研究所碩士學位論文, 民 95。 [4]陳逸宏, 王國禎, “ 氫離子濃度梯度驅動之太陽光電池之性能提升,” 國立中興大學機械工程研究所碩士學位論文, 民 96。 [5]A. P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, J Appl. Phys 84, 6023, 1998. [6]A. Fujishima and K. Honda, Nature 238, Vol 37, 1972. [7]H. Asoh et al., J. Electrochem. Soc. 148, B152, 2001. [8]H. Masuda, F. Hasegwa, S. Ono, J. Electrochem. Soc. 144, Vol 127, 1997. [9]W. E. Alley and B. J. Alder, Phy. Rev. Lett. 43, Vol 653, 1979. [10]張智棋、李佳家、陳建忠,“一維奈米同軸陣列式複合材料的製 備,”第九屆奈米工程暨微系統技術研討會, 2005. [11] 胡舒剴、賴俊熹、陳道安、黃文鑑,“應用TiO2光催化分解藻類及代謝臭味物質2-MIB之研究,” 第九屆奈米工程暨微系統技術研討會, 2005. [12] H. Shibata, N. Noda, Y. Ogura, K. Sogabe, and Y. Sawa, “Oxidation and Reduction of Nitrite Ion in the TiO2 Photo-induced Catalytic Reaction,” Biosci. Biotechnol. Biochem, Vol. 64, No. 8, pp.1751-1753, (2000). [13] Y. H. Chen, M. W. Lee, G. J. Wang, “A TiO2/CNT Coaxial Structure and Standing CNT Array Laminated Photocatalyst to Enhance the Photolysis Efficiency of TiO2,” Japanese Journal of Applied Physics, 2007. [14] S. R. Park, H. Peng, and X. S. Ling, “Fabrication of Nanopores in Silicon chips by electrochemical etching,” submitted on Oct. 17, 2005. [15] C. A. Gervasia, M. E. Folquerc, A. E. Vallejob, and P. E. Alvarezd, Electrochimica Acta, 50, 1113, 2005. [16] K. D. Huang and R. J. Yang, “Electrokinetic Behaviour of Overlapped Electric Double Layers in Nanofluidic Channels,” nanotechnology, Vol. 18, pp.1-6, 2007. [17] http://www.cella.cn/book/07/01.htm [18] http://www.bbioo.com/photo/2005/2065.htm [19] http://micro.magnet.fsu.edu/cells/chloroplasts/chloroplasts.html [20] http://elixirr.myweb.hinet.net/Chapter%2022.pdf [21] X. Wang, and G. R. Han, “Fabrication and characterization of anodic aluminum oxide template,” Journal of Microelectronic Engineering, 166-170, 2000 [22] Z. Siwy, A. Fulinski, ”Fabrication of a Synthetic Nanopore Ion Pump,” Phy. Rev, 198103-1(4), 2002. [23] S. R. Park, H. Peng, and X. S. Ling, “Fabrication of Nanopores in Silicon chips by electrochemical etching,” submitted on Oct, 17, 2005. [24] C. A. Gervasia, M. E. Folquerc, A. E. Vallejob, and P. E. Alvarezd, Electrochimica Acta, 50, 1113, 2005.
摘要: 
實驗室近年研究葉綠體光合作用,開發出的仿葉綠體機制之新型太陽光電池架構,主要包含:人工葉綠酵素(CNT/TiO2)與仿類囊體膜(AAO薄膜)兩個部份。
本研究主要在改善仿類囊體膜離子通道之效能,重點工作乃是製作以n-type與p-type半導體矽晶片為基材之多孔奈米陣列薄膜,取代AAO薄膜為分隔不同離子濃度之仿類囊體膜。
參照p-channel depletion-type MOSFET之架構,以n-type之矽晶半導體材料施加偏壓方式,使仿葉綠體之光電池成為一個多通道金屬-溶液-場效電晶體(Metal-solution field-effect transistor, MSFET),控制施加偏壓的大小,可改變奈米孔洞之電雙層電荷密度與Zeta電位,進而改變孔洞之電導(conduction),造成氫離子以較大之通量通過奈米孔洞,使太陽光電池之電流可以大量提昇。
實驗結果驗証仿葉綠體太陽能之金屬-溶液-場效特性,以孔洞800nm 之n-type矽晶薄膜為仿類囊體膜,在100 mW/cm²之可見光源照射以及-1 V之偏壓下,每平方公分之TiO2/CNT複合光觸媒能產生約8μA之光電流,其功率大小約為0.94μW,其中之TiO2含量為5.65×10-6g。在光電池長效能(1小時)測試中,滲透電流皆維持定值,TiO2/CNT 複合光觸媒之效能並未降低,驗証光觸媒僅參與水解反應,但過程中並無減損之特性,也更進一步彰顯仿葉綠體機制太陽光電池之綠色能源特色,亦即以人工葉綠素、水、太陽光即可長時間產生電能。

Recently, a novel and very simple chloroplastmimic photovoltaics that is powered by proton motive force and is able to simultaneously generate electricity and hydrogen has been being developed in our laboratory. The chloroplastmimic photovoltaic is comprised of three components: a water-containing electrochemical bath which acts as the photovoltaic body, artificial chlorophyll which is used to photolyze water and generates hydrogen ions, and an artificial thylakoid membrane which separates the bath into two cells to produce the proton motive force. A TiO2/CNT laminated photocatalyst was adopted to enhance the proton motive force; a porous anodic aluminum oxide (AAO) film was implemented to serve as the artificial thylakoid membrane. The main purpose of this research is to replace the AAO film with a nano-channels patterned n-type silicon membrane such that a small bias can be applied to analogize the chloroplastmimic photovoltaics to a multi-channel p-channel depletion type metal-solution field-effect transistor. Resultantly, the diffusion efficiency of the hydrogen ions can be markedly enhanced.
The experimental results demonstrate that the current density and power of the TiO2/CNT laminated photocatalyst that contained 5.65×10-6g of TiO2 were 8μA/cm² and 1μW respectively, under the exposure to a 100mW/cm² standard light source. The long-term operation of the MSFET for the nano-channel membrane with pore-size being 800 nm subjected to a -1V gate voltage was also conducted. The photocurrent kept at the same level for one hour with almost no degradation. The characteristic of the TiO2/CNT photocatalyst that it participates in the reaction but is not consumed in the reaction is apparently revealed.
URI: http://hdl.handle.net/11455/2032
其他識別: U0005-1507200814433200
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.