Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20330
標題: 長江三峽大壩全線截流前東海陸棚微生物碳通量質能平衡模型之建構與比較分析
Mass-balance models of microbial carbon fluxes in the East China Sea before operation of Three George Dam
作者: 謝莉顒
Hsieh, Li-Yung
關鍵字: 微生物;microb;碳通量;營養階層;質能平衡模型;ECOPATH;陸棚;東海;carbon flux;trophic;mass balance model;ECOPATH;continental shelf;East China Sea
出版社: 生命科學系所
引用: 蔡其芳。2004。台灣北部近岸地區小型浮游動物(Mesozooplankton)群聚組成、時間變異及其對浮游植物攝食之影響。台灣大學海洋研究所。碩士論文。 Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280:694-696 Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Progs Ser 10:257-263 Benitez-Nelson C, Buesseler KO, Karl DM, Andrews J (2001) A time-series study of particulate matter export in the North Pacific Subtropical Gyre based on 234TH:238U disequilibrium. Deep-Sea PT I 48:2595-2611 Bjornsen PK, Kuparinen J (1991) Determination of bacterioplankton biomass, net production and growth efficiency in the southern Ocean. Mar Ecol Prog Ser 71:185-194 Bojanić N, Šolić M, Krstulović N, Marasović I, Ninčević Ž, Vidjak O (2001) Seasonal and vertical distribution of the ciliatedprotozoa and micrometazoa in Kaštela Bay (cental Adriatic). Helgol Mar Res 55:150-149 Borsheim KY, Bratbak G (1987) Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar Ecol Prog Ser 36:171-175 Calbet A, Landry (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr 49:51-57 Capriulo GM, Carpenter EJ (1983) Abundance, species composition and feeding impact of tintinnid micro-zooplankton in central Long Island Sound. Mar Ecol Prog Ser 10:277-288 Carlson CA, Ducklow HW (1996) Growth of bacterioplankton and consumption of dissolved organic carbon in the Sargasso Sea. Aquat Microb Ecol 10:69-85 Caron DA, Goldman JC (1986) Effect of temperature on growth, respiration, and nutrient regeneration by an omnivorous microflagellate. Appl environ Microb 52:1340-1347 Caron DA, Goldman JC (1990) Carbon utilization by the omnivorous flagellate Paraphysomonas imperforata. Limnol Oceanogr 35:192-201 Chang J, Shiah FK, Gong G.C, Chiang KP (2003) Cross-shelf variation in carbon-to -chlorophyll a ratios in the East China Sea, summer 1998. Deep-Sea PT II 50:1237-1247 Chen CC, Shiah FK, Gong GC, Chiang KP (2003) Plankton community respiration in the East China Sea: importance of microbial consumption of organic carbon. Deep-Sea PT II 50:1311-1325 Chen CTA, Andreev A, Kim DR, Yamamoto M (2004) Roles of continental shelves and marginal seas in the biogeochemical cycles of the North Pacific Ocean. J Oceanogr 60:17-44 Chen CTA, Wang SL (1999) Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. J Geophys Res 104:20675-10686 Chen YLL (2000) Comparisons of primary productivity and phytoplankton size structure in the marginal regions of southern East China Sea. Cont Shelf Res 20:437-458 Chen YLL, Chen HY, Gong G.C, Lin YH, Jen S, Takahashi M (2004) Phytoplankton production during a summer coastal upwelling in the East China Sea. Cont Shelf Res 24:1321-1338 Chiang KP, Lin CY, Lee CH, Shiah FK, Chang J (2003) The coupling of oligotrich ciliate populations and hydrography in the East China Sea: spatial and temporal variations. Deep-Sea PT II 50:1279-1293 Chin-Leo G, Benner R (1992) Enhanced bacterioplankton production and respiration at intermediate salinities in teh Mississippi River plume. Mar Ecol Prog Ser 87:87-103 Christaki U, Van Wambeke F (1995) Simulated phytoplankton bloom input in top-down manipulated microcosms: comparative effect of zooflagellates, ciliates and copepods. Aquat Microb Ecol 9:137-147 Christensen V, Pauly D (1992) ECOPATH II – a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol Model 61:169-185 Christensen V, Walters CJ, Pauly D (2004) Ecopath with ecosim: a user’s guide. UBC Fisheries Centre and ICLARM, Vancouver, Canada Christensen V, Walter CJ, Pauly D, Forrest R (2008) Ecopath with Ecosim version 6: user guide. BC Fisheries Centre, Vancouver, Canada Coffin RB, Connolly JP, Harris PS (1993) Availability of dissolved organic carbon to bacterioplankton examined by oxygen utilization. Mar Ecol Prog Ser 101:9-22 Davidson K (1996) Modelling microbial food webs. Mar Ecol Prog Ser 145:279-296 del Giorgio PA, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29:503-541 Ducklow HW, Steinberg DK, Buesseler KO (2001) Upper ocean carbon export and the biological pump. special issue of JGOFS. Oceanography 41:50-58 Nagata T (2000) Production mechanisms of dissolved organic matter. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, NY, p121-154 Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282:677-680 Fenchel T (1982) Ecology of heterotrophic microflagellates. II. Bioenergetics and growth. Mar Ecol Prog Ser 8:225-231 Fenchel T (2008) The microbial loop - 25 years later. J Exp Mar Biol Ecol 366:99-103 Garstecki T, Wickham SA (2001) Effects of resuspension and mixing on population dynamics and trophic interactions in a model benthic microbial food web. Aquat Microb Ecol 25:281-292 Geider RJ, Leadbeater SC (1988) Kinetics and energetic of growth of the marine choanoflagellate Atephanoeca diplocostata. Mar Ecol Prog Ser 47:169-177 Goldman JC, Dennett MR (1992) Phagotrophy and NH4+ regeneration in a three-member microbial food loop. J Plankton Res 14:649-663 Gong G.C, Wen YH, Wang BW, Liu G.J (2003) Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep-Sea PT II 50:1219-1236 Hansell DA, Bates NR, Gundersen K (1995) Mineralization of dissolved organic carbon in the Sargasso Sea. Mar Chem 51:201-212 Hansell DA, Carlson CA (2001) Marine dissolved organic matter and the carbon cycle. Special issue of JGOFS. Oceanography 14:41-49 Hansson LA (1988). Chlorophyll a determination of periphyton on sediments: identification of problems and recommendation of method. Freshwater Biology 21: 347-352 Heinbokel JF, Beers JR (1979) Studies on the functional role of tintinnids in the southern California bight. III. Grazing impact of natural assemblages. Mar Biol 52:23-32 Holen DA, Boraas ME (1991) The feeding behavior of Spumella sp. as a function of particle size: implications for bacterial size in pelagic systems. Hydrobiologia 220:73-88 Hung JJ, Chen CH, Gong GC, Sheu DD, Shiah FK (2003) Distributions, stoichiometric patterns and cross-shelf exports of dissolved organic matter in the East China Sea. Deep-Sea PT II 50:1127-1145 Ishigaki T, Sleigh MA (2001) Grazing characteristics and growth efficiencies at two different temperatures for three nanoflagellates fed with Vibrio bacteria at three different concentrations. Microb Ecol 41:254-271 Jackson GA, Eldridge PM (1992) Food web analysis of a planktonic system off Southern California. Prog Oceanog 30:223-251 James MR, Hall JA (1995) Planktonic ciliated protozoa: their distribution and relationship to environmental variables in a marine coastal ecosystem. J Plankton Res 17:659-683 Josson PR (1986) Particle size selection, feeding rates and growth dynamcis of marine planktonic oligotrichous ciliates (Ciliophora: Oligotrichina). Mar Ecol Prog Ser 33:265-277 Khalaf MA, Kochzius M (2002) Change in trophic community structure of shore fishes at an industrial site in the Gulf of Aqaba Red Sea. Mar Ecol Prog Ser 239:287-299 Leaky RJG, Fenton N, Clarke (1994) The annual cycle of planktonic ciliates in nearshore waters at Signy Island, Antarctica. J Plankton Res p.841-856 Lee HJ, Chao SY (2003) A climatological description of circulation in and around the East China Sea. Deep-See PT II 50:1065-1084 Legendre L (1995) Plankton and nutrient dynamics in marine waters. OPHELIA 41:153-172 Legendre L, Le Fevre J (1995) Microbial food webs and the export of biogenic carbon in oceans. Aquat Microb Ecol 9:69-77 Legendre L, Rivkin RB (2002) Fluxes of carbon in the upper ocean: regulation by food-web control nodes. Mar Ecol Prog Ser 242:95-109 Lemee R, Rochelle-Newall E, Van Wambeke F, Pizay MD, Rinaldi P, Gattuso JP (2002) Seasonal variation of bacterial production, respiration and growth efficiency in the open NW Mediterranean Sea. Aquat Microb Ecol 29:227-237 Liu KK, Chao SY, Lee HJ, Gong GC, Teng YC (2010) Seasonal variation of primary productivity in the East China Sea: A numerical study based on coupled physical-biogeochemical model. Deep-Sea Res II 57:1762-1782 Liu KK, Peng TH, Shaw PT, Shiah FK (2003) Circulation and biogeochemical processes in the East China Sea and the vicinity of Taiwan: an overview and a brief synthesis. Deep-Sea PT II 50:1055-1064 Lynn DH, Roff JC, Hopcroft RR (1991) Annual abundance and biomass of aloricate ciliates in tropical neritic waters off Kingston, Jamaica. Mar Biol 110:437-448. Michaels AF, Bates NR, Buesseler KO, Carlson CA, Knap AH (1994) Carbon-cycle imbalances in the Sargasso Sea. Nature 372:537-540 Morissette, L. 2007. Complexity, cost and quality of ecosystem models and their impact on resilience: A comparative analysis, with emphasis on marine mammals and the Gulf of St. Lawrence. Ph.D. thesis. University of British Columbia, Canada. Nagata T (2000) Production mechanisms of dissolved organic matter. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, NY, p121-154 Odum EP (1968) Energy flow in ecosystem: A historical review. Amer Zool 8:11-18 Ohman MD, Snydr RA (1991) Growth kinetics of the omnivorous oligotrich ciliate Strombidium sp. 36:922-935 Ota T, Taniguchi A (2003) Standing crop of planktonic ciliates in the East China Sea and their potential grazing impact and contribution to nutrient regeneration. Deep-Sea PT II 50:423-442 Pace ML, Glasser JE, Pomeroy LR (1984) A simulation analysis of continental shelf food webs. Mar Biol 82:47-63 Pelegri SP, Christaki U, Dolan J, Rassoulzadegan F (1999) Particulate and dissolved organic carbon production by the heterotrophic nanoflagellate Pteridomonas danica Patterson and Fenchel. Microb Ecol 37:276-284 Peng TH, Hung JJ, Wanninkhof R, Millero FJ (1999) Carbon budget in the East China Sea in spring. Tellus 51B:531-540 Personnic S, Domaizon I, Sime-Ngando T, Jacquet S (2009) Seasonal variations of microbial abundances and virus- versus flagellate-induced mortality of picoplankton in three peri-alpine lakes. J Plankon Res 31:1161-1177 Pomeroy LR (1992) The microbial food web. Oceanus 35:28-35 Pomeroy LR, Wiebe WJ (1993) Energy sources for microbial food webs. Mar Microb Food Webs 7:101-118 Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine "oligotrichous" ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097-1103 Rassoulzadegan F, Sheldon RW (1986) Predator-prey interactions of nanozooplankton and bacteria in an oligotrophic marine environment. Limnol Oceanogr 31:1010-1021 Rivkin RB, Legendre L (2001) Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science 291:2398-2400 Rivkin RB, Legendre L, Deibel D, Tremblay J-E, Klein B, Crocker K, Roy S, Silverberg N, Lovejoy C, Mesple F, Romero N, Anderson MR, Matthews P, Savenkoff C, Vezina A, therriault J-C, Wesson J, Berube, Ingram RG (1996) Vertical flux of biogenic carbon in the ocean: Is there food web control? Science 272:1163-1166 Scott JM (1985) The feeding rates and efficiencies of a marine ciliate, Strombidium sp., grown under chemostat steady-state conditions. J Exp Mar Biol Ecol 90:81-95 Sherr BF, Sherr EB, Berman T (1983) Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl environ Microb 45:1196-1201 Shiah FK, Chen TY, Gong GC, Chen CC, Chiang KP, Hung JJ (2001) Differential coupling of bacterial and primary production in mesotrophic and oligotrophic systems of the East China Sea. Aquat Microb Ecol 23:273-282 Shiah FK, Gong G.C, Chen CC (2003) Seasonal and spatial variation of bacterial production in the continental shelf of the East China Sea: possible controlling mechanisms and potential roles in carbon cycling. Deep-Sea PT II 50:1295-1309 Shiah FK, Liu KK, Kao SJ, Gong GC (2000) The coupling of bacterial production and hydrography in the southern East China Sea: spatial patterns in spring and fall. Continental Shelf Research 20:459-477 Shiomoto A, Tadokoro K, Monaka K, Nanba M (1997) Productivity of picoplankton compared with that of larger phytoplankton in the subarctic region. J Plankton Res 19:907-916 Šolić M, Krstulović N (1995) Bacterial carbon flux through the microbial loop in Kaštela Bay (Adriatic Sea). OPHELIA 41:345-360 Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH (2001) Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep-Sea Res PT II 48:1405-1447 Stoecker DK, Evans GT (1985) Effects of protozoan herbivory and carnivory in a microplankton food web. Mar Ecol Prog Ser 25:159-167 Strom SL, Morello TA (1998) Comparative growth rates and yields of ciliates and heterotrophic dinoflagellates. J Plank Res 20:571-584 Suzuki T, Yamada N, Taniguchi A (1998) Standing crops of planktonic ciliates and nanoplankton in oceanic waters of the western Pacific. Aquat Microb Ecol 14:49-58 Teira E., Abalde J., Alvarez-Ossorio M.T., Bode A., Carino C., Cid A., Fernandez E., Gonzalez N., Lorenzo J., Valencia J. and Varela M. 2003. Plankton carbon budget in a coastal wind-driven upwelling station off A Coruna (NW Iberian Peninsula). Marine Ecology Progress Series 265:31-43 Tsai AY, Chiang KP, Gong GC (2005) Seasonal diel variations of picoplankton and nanoplankton in a subtropical western Pacific coastal ecosystem. Limnol Oceanogr 50:1221-1231 Turley CM, Newell RC, Robins DB (1986) Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions. Mar Ecol Prog Ser 33:59-70 Usbeck R, Schlitzer R, Fischer G, Wefer G (2003) Particle fluxes in the ocean: comparison of sediment trap data with results from inverse modeling. J Marine Syst 39:167-183 Verity PG (1991) Measurement and simulation of prey uptake by marine planktonic ciliates fed plastidic and aplastidic nanoplankton. Limnol Oceanogr 36:729-750 Watson R, Pauly D (2001) Systematic distortions in world fisheries catch trends. Nature 414:534-536 Welch HE (1968) Relationships between assimilation efficiencies and growth efficiencies for aquatic consumers. Ecology 49:755-759 Wiegert RG (1974) Mathematical representation of ecological interactions. Ecosystem analysis and prediction: proceeding of a SIAM-SIMS conference, Alta, Utah:43-53 Wikner J, Cuadros R, Jansson M (1999) Differences in consumption of allochthonous DOC under limnic and estuarine conditions in a watershed. Aquat Microb Ecol 17:289-299 Zubkov MV, Sleigh MA (1996) Bacterivory by the ciliate Euplotes in different states of hunger. FEMS Microbiol Ecol 20:137-147 Zubkov MV, Sleigh MA (1997) Bacterivory in seawater samples estimated by a dual radioactive-labelling technique. J Plankton Res 19:209-219 Zubkov MV, Sleigh MA (1999) Growth of amoebae and flagellates on bacteria deposited on filters. Microb Ecol 37:107-115 Zubkov MV, Sleigh MA (2000) Comparison of growth efficiencies of protozoa growing on bacteria deposited on surfaces and in suspension. J. Eukaryot Microbiol 47:62-69 Zweifel UL, Norrman B, Hagstrom A (1993) Consumption of dissolved organic carbon by marine bacteria and demand for inorganic nutrients. Mar Ecol Prog Ser 101:23-32
摘要: 
本研究利用ECOPATH質能平衡模型整合各生物類群有機碳之每日流量及有機碳儲存庫來建構東海陸棚之微生物生物碳循環,並探討生物碳循環內有機碳流通情形。為了解長江淡水注入東海對微生物碳循環之影響,本研究在25o~33oN, 119 o ~128 oE間選擇21站進行模擬,藉以探討生物碳通量在季節及空間分布的變化。將東海微生物依食性關係分為自營性的pico級及較大型浮游藻,異營性的細菌、nano級鞭毛蟲及纖毛蟲5個功能性生物類群。另外設定溶解態及顆粒性有機碳作為有機碳儲存庫。東海陸棚微生物生物量有由沿岸海域往陸棚增加的趨勢,沿岸海域除了夏季以浮游藻為優勢以外,其他季節皆以異營性細菌為優勢,而在陸棚則是以浮游藻為優勢。模型所推估的異營性細菌呼吸率佔基礎生產率之12-158 %、異營性nano級鞭毛蟲呼吸率佔3-6 %、纖毛蟲呼吸率佔1-2 %。生物碳通量主要發生在pico級及較大型浮游藻分別流向POC、POC分解為DOC、DOC被異營性細菌吸收及異營性細菌的呼吸作用5條路徑,其中又以DOC 被異營性細菌吸收佔總通量之比例最高。4個季節中這5條路徑以夏季佔總通量72 ± 12 %為最高,秋季最低為59 ± 12 %。本研究推估東海微生物系統POC的輸出率為0.020-0.479 g C m-2 d-1,DOC為 -0.104-1.009 g C m-2 d-1。經由DOC與POC的每日輸出量粗略估算東海陸棚每年之DOC輸出量為9058x10^9 g C yr-1,POC為8915x10^9 g C yr-1。細菌生長效益對於推估生物產DOC輸出量是很重要的參數。在東海陸棚微生物碳通量主要的輸出為POC,因此若要進一步探討生物碳的命運,加入中大型浮游動物或膠體動物是必要的。經由質能平衡模型可以將生物類群之資料整合,並由生態系的角度分析生物碳通量之結構與功能。模型還可推估未知的參數,再進一步預測未來,如漁獲量等。

Using ECOPATH with ECOSIM, mass-balanced trophic models were constructed at sites along transects from the Changjiang Estuary and the coast of mainland China across the East China Sea to the west edge of Kuroshio to characterize the microbial carbon flows in the euphotic zone. Each model comprises 7 compartments, including picophytoplankton (<3μm), larger sized phytoplankton (3-20 μm and >20 μm), heterotrophic bacteria, nanoflagellates, ciliates, particulate organic carbon (POC) and dissolved organic carbon (DOC). Total biomass increased from the coast waters to Kuroshio. Phytoplankton was normally the most dominant compartment in the East china Sea, however, heterotrophic bacteria dominated near the estuary, but shifted to phytoplankton in summer. Total system throughput (TST) was highest in summer and lowest in autumn. Heterotrophic bacteria respired 12-158 % of the primary production, nanoflagellates respired 3-6 %, and ciliates respired 1-2 %. The most important pathways of microbial carbon flow were DOC being absorbed by bacteria, reaching 15~23% of TST. Exports of POC and DOC from microbial food web to upper trophic level or to the deeper ocean were respectively estimated to be 0.020~0.479 g C m-2 d-1 and -0.104~1.009 g C m-2 d-1 or 9058x10^9 g C yr-1 and 8915x10^9 g C yr-1. Bacteria growth efficiency is an important parameter for DOC export. The main biogenic carbon flow in the East China Sea was POC export to outside system. It need to input macro zooplankton to the model.
URI: http://hdl.handle.net/11455/20330
其他識別: U0005-2708201208594400
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.