Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2034
標題: 以陽極氧化鋁模板製備3D均勻分布之奈米金粒子生物感測器
Fabrication of a gold-nanoparticle based nanobiosensor using AAO template
作者: 林侑達
Lin, You-Da
關鍵字: Nanobiosensor;奈米生醫感測器;Electrophoresis deposition;barrier layer of an AAO film;電泳沉積法;陽極氧化鋁膜阻障層
出版社: 機械工程學系所
引用: 1. G.- S. Nunes, I.- A. Toscano, D. Barcelo, “Analysis of pesticides in food and environmental samples by enzyme-linked immunosorbent assays,” Analytical Chemistry 17, 79-87, (1998). 2. J.- T. He, Z.- H. Shi, J. Yan, M.- P. Zhao, Z.- Q. Guo, W.- B. Chang, “Biotin–avidin amplified enzyme-linked immunosorbent assay for determination of isoflavone daidzein,” Talanta 65, 621–626, (2005). 3. S.- M. Han, J.- H. Cho, I.- H. Cho, E.- H. Paek, H.- B. Oh, B.- S. Kim, C.- R. K. Lee, Y.- K. Kim, S.- H. Paek, “Plastic enzyme-linked immunosorbent assays (ELISA)-on-a-chipbiosensor for botulinum neurotoxin A,” Analytica Chimica Acta 587, 1–8, (2007). 4. S.- J. Lee, V. Anandana, G. Zhang, “Electrochemical fabrication and evaluation of highly sensitive nanorod-modified electrodes for a biotin/avidin system,” Biosensors and Bioelectronics 23, 1117–1124, (2008). 5. J.- S. Yuk, J.- W. Jung, Y.- M. Kim, K.- S. Ha,“ Analysis of protein arrays with a dual-function SPR biosensor composed of surface plasmon microscopy and SPR spectroscopy based on white light,” Sensors and Actuators B 129, 113–119, (2008). 6. P.- S. Sumant , S.- K. Maiti, “Crack detection in a beam usingPZT sensors,” Smart Mater. Struct. 15, 695–703, (2006). 7. C.- R. Lowe, “Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures,” Current Opinion in Structural Biology, vol.10, 428-434, (2000). 8. W.- C. Bigelow, D.- L. Pickett, W.- A. Zisman, “Potential-dependent stability of self-assembled organothiols on gold electrodes in methylene chloride” Colloid Interface Sci 1, 513 , (1946). 9. R.- G. Nuzzo, F.- A. Fusco, D.- L. Allara, “Spontaneously organized molecularassemblies. 3. preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces,” Journal of the American Chemical Society, 109, 2358-2368, (1987). 10. E.- S. Rubinstein, R. Maoz , J. Sagiv, “Organized Monolayers on Gold Electrodes in Electrochemical Sensors for Biomedical Applications,” The Electrochemical Society, 175, (1986). 11. L.- H. Dubois and R.- G..Nuzzo, “Synthesis, Structure, and Properties of Model Organic Surfaces,”Annu. Rev. Phys. Chem 43, 437-463, (1992). 12. W. R. Everett, T. L. Welch, L. Reed, I. F. Faules,“Potential-dependent stability of self-assembled organothiols on gold electrodes in methylene chloride”, AnalyticalChemistry67, 292-298, (1995). 13. J.-M. Collard, J. Malaise, J.-Y. Mabrut, et al., “En--bloc gastrectomy for adenocarcinoma in Caucasian patients,”Gastric Cancer 6 , 210–16, (2003). 14. L.- C. Clark, C. Lyons, “Electrode systems for continuous monitoring incardiovascular surgery,”Annals of the New York Academy of Sciences 102, 29-45, (1962). 15. 劉盈村,光纖式表面電漿子共振生醫微感測器,國立台灣大學醫學工程研究所碩士論文,(2001)。 16. H. Masuda, F. Hasegwa, S. Ono, “Self-ordering of cell arrangement. of anodic porous alumina formed in sulfuric acid solution,” J. Electrochem. Soc. 144, 127-130, (1997). 17. G.- E. Thompson, “Porous anodic alumina: fabrication characterization and applications,” Thin Solid Film 297, 192-201, (1997). 18. G.- E. Thompson, R.- C. Furneaux, G.- C. Wood, J.- A. Richardson, “Growth of Porous Anodic Film on Aluminium,” Nature 272, 433-435, (1978). 19. K. Shimizu, S. Kobayashi, G.- E. Thompson, G.- C. Wood, “Electron Beam Induced Crystallization of Anodic Barrier Films on Aluminium: Influence of incorporated anions,” J. Appl. Electrochem. 15, 781-783, (1985). 20. A.- P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J Appl. Phys. 84 (11), 6023-6026, (1998). 21. H. Masuda, K. Fukuda, " Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science 268, 1466-1468, (1995). 22. H. Masuda, K. Yada, A. Osaka, “Self-Ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,” Jpn. J. Appl. Phys. 37, 1340-1342, (1998). 23. C.- Y. Liu, A. Datta, and Y.- L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Appl. Phys. Lett. 78 (1), 120-122, (2001). 24. H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, T. Tamamura, “Square and Triangular Nanohole Array Architectures in Anodic Alumina,” Adv. Mater. 13 (3), 189-192, (2001). 25. J.- S. Bradly, “The Chemistry of Transition Metal Colloids,” Clusters and Colloids, 459-530, (1994). 26. M.- T. Reetz, R. Bieinhauer, T. Thomas, “Site-Selective Synthesis of Nanostructural Transition Metal clusters,“ J. American Chemical Society 116, 7401-7401, (1994). 27. K.Okitsu, H.Bandow, Y. Maeda, “Sonochemical Preparation of Ultrafine Palladiam Particles,” Chemistry of Material 8, 315-317, (1996). 28. N.-R. Jana, L. Geavheart, C.- J. Murphy, “Evidence for Seed-mediated Nucleation in the Chemical Reduction of Gold Salt to Gold Nanoparticles,” Chemistry of Materials 13, 2313-2322, (2001). 29. S. Claudia, J. Andreas, W. Joachim, P.- U. Wolf, W. Wolfgang, S. Manfred, J.- G. Hans, “Impedance and shear wave resonance analysis of ligand-receptor interactions at functionalized surfaces and of cell monolayers,” Biosensors and Bioelectronics 12, 787-808, (1997). 30. J.- F. Carmelo, a E.- M. Rossan, M.- O. Juan, I.- R. Viviana, E.- V. Max, “Impedance microbiology: quantification of bacterial content in milk by means of capacitance growth curves,” Journal of Microbiological Methods, 35, 37-42, (1999). 31. A. Amirudin, D. Thierry, “Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals”, Progress Organic Coatings 26, 1-28, (1995). 32. W. Jing, E. Wang, “Paint-freeze method to from self-assembled alkanethio bilayers on gold”, Analytical Sciences 14, 117-120, (1998). 33. C. Tlili, K. Reybier, L. Ponsonnet, C. Martelet, H.- B. Ouada, M. Lagarde, and N.- J. Renault, “Fibroblast cells:a sensing bioelement for glucose detection byimpedance spectroscopy,” Analytical Chemistry, 75, 3340-3344, (2003). 34. F. Bordi, C. Cametti, A. Gliozzi, “Impedance measurements of self-assembled lipid bilayer membranes on the tip of an electrode,” Bioelectrochemistry 57, 39-46, (2002). 35. E. Katz, L. Alfonta, I. Willner, “Chronopotentiometry and faradaic impedancespectroscopy as methods for signal transduction in immunosensors”, Sensors and Actuators B 76, 134-141, (2001). 36. L. Yang, Y. Li, G.- F. Erf, “Interdigitated array microelectrode-based electrochemicalimpedance immunosensor for detection of Escherichia coli O157:H7”, Analytical Chemistry 76, 1107-1113, (2004). 37. Y. Li, M. Kobayashi, K. Furui, “Surface plasmon resonance immunosensor for histamine based on an indirect competitive immunoreaction,” Analytica Chimica Acta 576, 77-83, (2006) 38. 張景順,多孔性金酵素電極在流動注入分析系統中之電化學分析及應用,國立中山大學化學研究所碩士論文,(2004) 39. S.- J. Ding, B.- W. Chang, C.- C. Wu, “Impedance spectral studies of self-assembly of alkanethiols with different chain lengths using different immobilization strstegies on Au electrodes,” Analytica Chimica Acta 554, 43-51, (2005). 40. 賴民峰,電阻抗分析於自組性單層薄膜之特性評估與其在生物檢
摘要: 
本研究提出一個以3D均勻分佈之奈米金顆粒為感測元件之超高靈敏度奈米生醫感測器。此一超高靈敏度奈米生醫感測器以陽極氧化鋁膜(AAO)之阻障層結構為基板,先濺鍍一層30 nm之金薄膜做為電極,然後以電泳沉積法沉積奈米金顆粒,奈米金顆粒之沉積密度可由施加電壓之大小加以控制,結合自組裝單分子膜層(SAMs)的技術,將抗體接於奈米金顆粒上,利用循環伏安法(CV)、電化學阻抗分析法(EIS)、共軛聚焦倒立式螢光顯微鏡、UV-VIS等…,用以偵測相對應之待測物。
本研究所提出之奈米生醫感測器之高靈敏度源自於下列因素:(1)奈米金顆粒之高活性(2) AAO阻障層之半球形奈米結構提昇奈米金顆粒之結合面積(3)電力線在半球形奈米結構表面之均勻分佈使得奈米金顆粒得以藉由電泳沉積法均勻且密集沉積(4)可大面積製作之AAO阻障層,進一步提昇感測器之感測面積。實驗結果驗證本研究提出之奈米生醫感測器確有極優越之靈敏度。測量的結果顯示有奈米結構之真實面積可以提升2倍以上,而所接上待測物的數量也大量提升,以電化學阻抗分析法檢測biotin之檢測極限可達到4ng/ml。

In this paper, we propose an high sensitive nanobiosensor based on a 3D sensing element that has uniformly deposited gold nanoparticles. The barrier layer of an anodic aluminum oxide (AAO) film is used as the template; a gold thin film is deposited on the surface of the barrier layer; gold nanoparticles are then uniformly deposited on the gold thin film by electrophoresis deposition. The distribution density of the gold nanoparticles can be precisely controlled by the applied voltage; following, receptors or antibodies with respect to a certain biomarker are attached to the gold nanoparticles. The sensitivity of the biosensor is markedly enhanced due to the following factors. (1)The 3D nanostructure of the AAO film increases the binding surface of the gold nanoparticles; (2)The symmetrical distribution of the electric field intensity during electrophoresis depositing results in an exceptionally uniform distribution of the gold nanoparticles; (3) Larger area of the sensing element further enlarges the sensing area.
URI: http://hdl.handle.net/11455/2034
其他識別: U0005-1507200818122700
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.