Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20347
標題: 高鹽甲烷太古生物之熱休克蛋白DnaK、DnaJ和GrpE基因的選殖與特性分析
Cloning, Gene Expression, and Functional Characterization of Heat Shock Protein DnaK, DnaJ, and GrpE in Methanohalophilis portucalensis FDF1T
作者: 陳仕珊
Chen, Shih-Shan
關鍵字: 太古生物;Archaea;分子伴護蛋白;高鹽甲烷菌;dnaJ;dnaK;grpE;Halophilic methanogen;Molecular chaperone
出版社: 生命科學系所
引用: 丁俊彥。2011。極端高鹽太古生物之分類鑑定、比較基因體分析及其生物科技應用潛力之研究。國立中興大學生命科學系研究所博士論文。 賴姝蓉。2011。高鹽甲烷太古生物之相容質甜菜鹼自體生合成酵素特性分析並探討其應用於模式物種阿拉伯芥與斑馬於抗鹽抗旱的可行性。國立中興大學生命科學系研究所博士論文。 林芸。2008。高鹽太古生物在溫度、鹽及氧氣逆境下化學伴護因子對分子伴護蛋白基因表現的影響。國立中興大學生命科學系研究所碩士論文。 柯宗佑。2009。高鹽甲烷太古生物ClpB蛋白之特性分析。國立中興大學生命科學系研究所碩士論文。 洪娟娟。2012。甲烷太古生物之相容質Nε-acetyl-β-lysine自體生合成基因以及酵素特性分析。國立中興大學生命科學系研究所博士論文。 陳詩雅。2006。嗜鹽甲烷古生菌之相容質甜菜簡生合成酵素Sarcosine Dimethylglycine N-Methyltransferase的純化及特性探討。國立中興大學生命科學系研究所碩士論文。 Alberti, S., C. Esser, and J. Hohfeld. 2003. BAG-1--a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones 8:225-31. Auton, M. and D. W. Bolen. 2005. Predicting the energetics of osmolyte-induced protein folding/unfolding. Proc. Natl. Acad. Sci. USA. 102:15065-15068. Baldwin, R. L. 1986. Temperature dependence of the hydrophobic interaction in protein folding. Proc. Natl. Acad. Sci. USA. 21:8069-8072 Baneyx, F., and M. Mujacic. 2004. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 22:1399-408. Ben-Zvi, A. P. and P. Goloubinoff. 2002. Proteinaceous infectious behavior in non-pathogenic proteins is controlled by molecular chaperones. J. Biol. Chem. 277:49422-49427. Bigotti, M. G., and A. R. Clarke. 2005. Cooperativity in the thermosome. J. Mol. Biol. 348:13-26. Bochkareva, E. S. and N. M. Lissin. 1992. Positive cooperativity in the functioning of molecular chaperone GroEL. J. Biol. Chem. 267:6796-6800. Bock, P. E. and C. Frieden. 1974. pH-induced cold lability of rabbit skeletal muscle phosphofructokinase. Biochem. 13:4191-4196. Boone, D. R., I. M. Mathrani, Y. Liu., J. A. G. F. Menaia, R. A. Mah and J. E. Boone. 1993. Isolation and characterization of Methanohalophilus portucalensis sp. nov. and DNA reassociation study of the genus Methanohalophilus. Int. J. Syst. Bacteriol. 43:430-437. Braig, K., Z. Otwinowski, R. Hegde, D. C. Boisvert, A. Joachimiak, A. L. Horwich and P. B. Sigler. 1994. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature. 371:578-586. Bukau, B. and A. L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell. 92:351–366. Bukau, B., E. Deuerling, C. Pfund, and E. A. Craig. 2000. Getting newly synthesized proteins into shape. Cell. 101:119-22. Chen, H. Y., Z. M. Chu, Y. H. Ma, Y. Zhang, and S. L. Yang. 2007. Expression and characterization of the chaperonin molecular machine from the hyperthermophilic archaeon Pyrococcus furiosus. J. Basic. Microbiol. 47:132-7. Diamant S., D. Rosenthal, A. Azem, N. Eliahu, A. P. Ben-Zvi and P. Goloubinoff 2003. Dicarboxylic amino acids and glycine-betaine regulate chaperone-mediated protein-disaggregation under stress. Mol. Microbiol. 49:401-410. Doyle, S. M., J. R. Hoskins, and S. Wickner. 2007. Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system. Proc. Natl. Acad. Sci. USA 104:11138-44. Ellis, R. J. 2001. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26:597-604. Fenton, W. A., Y. Kashi, K. Furtak, A. L. Horwich. 1994. Residues in chaperonin GroEL required for polypeptide binding and release. Nature. 371:614-619. Figueiredo, L., D. Klunker, D. Ang, D. J. Naylor, M. J. Kerner, C. Georgopoulos, F. U. Hartl, and M. Hayer-Hartl. 2004. Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation. J. Biol. Chem. 279:1090-9. Gelinas, A. D., K. Langsetmo, J. Toth, K. A. Bethoney, W. F. Stafford and C. J. Harrison. 2002. A structure-based interpretation of E. coli GrpE thermodynamic properties. J. Mol. Biol. 323:131-142 Guell, M., V. van Noort, E. Yus, W. H. Chen, J. Leigh-Bell, K. Michalodimitrakis, T. Yamada, M. Arumugam, T. Doerks, S. Kuhner, M. Rode, M. Suyama, S. Schmidt, A. C. Gavin, P. Bork, L. Serrano. 2009. Transcriptome complexity in a genome-reduced bacterium. Science. 326:1268-71 Gray, T. E. and A. R. Fersht. 1991. Cooperativity in ATP hydrolysis by GroEL is increased by GroES. FEBS Lett. 292:254-258. Guisbert, E., T. Yura, V. A. Rhodius, and C. A. Gross. 2008. Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol. Mol. Biol. Rev. 72:545-54. Haak, J., and K. C. Kregel. 2008. 1962-2007: a cell stress odyssey. Navartis Found Symp. 291:3-15. Harrison, C. 2003. GrpE, a nucleotide exchange factor for DnaK. Cell Stress Chaperones. 8:218-24. Harrison, C. J., M. Hayer-Hartl, M. Di Liberto, F. Hartl, and J. Kuriyan. 1997. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science. 276:431-5. Hartl, F. H. and M. H. Hartl. 2006. Molecular chaperone in cytosol: from nascent chain to folded protein. Science. 295:1852-1858 Hemmingsen, S. M., C. Woolford, S. M. van der Vies, K. Tilly, D. T. Dennis, C. P. Georgopoulos, R. W. Hendrix, and R. J. Ellis. 1988. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature. 333:330-4. Hickey, A. J., E. Conway de Macario, and A. J. L. Macario. 2002. Transcription in the Archaea: Basal Factors, Regulation, and stress-gene expression. Crit. Rev. Biochem. Mol. Biol. 37:537-599 Houry, W. A. 2001. Chaperone-assisted protein folding in the cell cytoplasm. Curr. Protein Pept. Sci. 2:227-44. Hunt, J. F., A. J. Weaver, S. J. Landry, L. Gierasch and J. Beisenhofer. 1996. The crystal structure of GroES co-chaperonin at 2.8 A resolution. Nature. 379:37-45. Johnson, C., G. N. Chandrasekhar, and C. Georgopoulos. 1989. Escherichia coli DnaK and GrpE heat shock proteins interact both in vivo and in vitro. J. Bacteriol. 171:1590-6. Kitagawa, M., C. Wada and S. Yoshiola. 1991. Expression of ClpB, an analog of the ATP-dependent protease regulatory subunit in Escherichia coli, is controlled by a heat shock sigma factor (sigma 32). J. Bacteriol. 173:4247-4253 Lai, M. C. and R. P. Gunsalus. 1992. Glycine betaine and potassium ion are the major compatible solutes in the extremely halophilic methanogen Methanohalophilus strain Z7302. J. Bacteriol. 174:7474-7. Lai, M. C., T. Y. Hong, and R. P. Gunsalus. 2000. Glycine betaine transport in the obligate halophilic archaeon Methanohalophilus portucalensis. J. Bacteriol. 182:5020-4. Lai, S. J. and M. C. Lai. 2011. Characterization and Regulation of the Osmolyte Betaine Synthesizing Enzymes GSMT and SDMT from Halophilic Methanogen Methanohalophilus portucalensis. PLoS One. 6:e25090 Lai, M. C., C. C. Wang, M. J. Chuang, Y. C. Wu, and Y. C. Lee. 2006. Effects of substrate and potassium on the betaine-synthesizing enzyme glycine sarcosine dimethylglycine N-methyltransferase from a halophilic methanoarchaeon Methanohalophilus portucalensis. Res. Microbiol. 157:948-55. Lai, M. C., D. R. Yang, and M. J. Chuang. 1999. Regulatory factors associated with synthesis of the osmolyte glycine betaine in the halophilic methanoarchaeon Methanohalophilus portucalensis. Appl. Environ. Microbiol. 65:828-33. Lai, M. C., K. R. Sowers, D. E. Robertson, M. F. Roberts and R. P. Gunsalus. 1991. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J. Bacteriol. 173:5352-5358. Laksanalamai, P., T. A. Whitehead, and F. T. Robb. 2004. Minimal protein-folding systems in hyperthermophilic archaea. Nat. Rev. Microbiol. 2:315-24. Landry, S.J., J. Zeilstra-Ryalls, O. Fayet, C. Georgopoulos, L. M. Gierasch. 1993. Characterization of a functionally important mobile domain of GroES. Nature. 364:255–258. Langer, T., C. Lu, H. Echols, J. Flanagan, M. K. Hayer, and F. U. Hartl. 1992. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature. 356:683-9. Lanzetta, P. A., L. J. Alvarez, P. S. Reinach and O. A. Candia. 1979. An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100: 95-97. Large, A. T., M. D. Goldberg, and P. A. Lund. 2009. Chaperones and protein folding in the archaea. Biochem. Soc. Trans. 37:46-51. Lee, S., M. E. Sowa, Y. H. Watanabe, P. B. Sigler, W. Chiu, M. Yoshida, and F. T. Tsai. 2003. The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell. 115:229-40. Li, J., X. Qian, and B. Sha. 2003. The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. Structure. 11:1475-83. Li, J., X. Qian, and B. Sha. 2009. Heat shock protein 40: structural studies and their functional implications. Protein Pept. Lett. 16:606-12. Liberek, K., A. Lewandowska, and S. Zietkiewicz. 2008. Chaperones in control of protein disaggregation. EMBO J. 27:328-35. Lin, Z. and H. S. Rye. 2006. GroEL-mediated protein folding: making the impossible, possible. Crit. Rev. Biochem. Mol. Biol. 41:211-239. Macario, A. J. and E. Conway de Macario. 1999. The Archaeal Molecular Chaperone Machine: Peculiarities and Paradoxes. Genetics. 152:1277-1283 Macario, A. J., L. Brocchieri, A. R. Shenoy, and E. Conway de Macario. 2006. Evolution of a protein-folding machine: genomic and evolutionary analyses reveal three lineages of the archaeal hsp70(dnaK) gene. J. Mol. Evol. 63:74-86. Mathrani, I. M., and D. R. Boone. 1985. Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Appl. Environ. Microbiol. 50:140-3. Mayer, M. P., and B. Bukau. 2005. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol. Life Sci. 62:670-84. Morgan C. J., A. Miranker, and C.M. Dobson. 1998. Characterization of collapsed states in the early stages of the refolding of hen lysozyme. Biochemistry. 37:8473-8480 Muchowski, P. J., G. Schaffar, A. Sittler, E. E. Wanker, M. K. Hayer-Hartl, and F. U. Hartl. 2000. Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl. Acad. Sci. USA. 97:7841-6. Nollen, E. A., A. E. Kabakov, J. F. Brunsting, B. Kanon, J. Hohfeld, and H. H. Kampinga. 2001. Modulation of in vivo HSP70 chaperone activity by Hip and Bag-1. J. Biol. Chem. 276:4677-82. Kagawa, H. K., J. Osipiuk, N. Maltsev, R. Overbeek, E. Quaite-Randall, A. Joachimiak and J. D. Trent. 1995. The 60 kDa Heat Shock Proteins in the Hyperthermophilic Archaeon Sulfolobus shibatae. J. Mol. Biol. 253:712-275 Kitagawa, M., C. Wada and S. Yoshiola. 1991. Expression of ClpB, an Analog of the ATP-Dependent Protease Regulatory Subunit in Escherichia coli, is controlled by a heat shock ou Factor (sigma 32). J. Bacteriol. 173:4247-4253 Klumpp, M., W. Baumeister and L. O. Essen. 1997. Structure of the substrate binding domain of the thermosome, an archaeal group II chaperonin. Cell. 17: 263–270. Klunker, D., B. Haas, A. Hirtreiter, L. Figueiredo, D. J. Naylor, G. Pfeifer, V. Muller, U. Deppenmeier, G. Gottschalk, F. U. Hartl and M. Hayer-Hartl. 2003. Coexistence of Group I and Group II chaperonins in the archaeon Methanosarcina mazei. J. Biol. Chem. 278:33256-33257. Koide T., D. J. R eiss, J. C. Bare , W. L. Pang , M. T. Facciotti , A. K. Schmid , M. Pan , B. Marzolf, P. T. Van , F. Y. Lo, A. Pratap, E. W. Deutsch , A. Peterson , D. Martin , N. S. Baliga . 2009. Prevalence of transcription promoters within archaeal operons and coding sequences. Mol. Syst. Biol. 5:285 Nonaka, G., M. Blankschien, C. Herman, C. A. Gross, and V. A. Rhodius. 2006. Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress. Genes Dev. 20:1776-89. Phipps, B.M., D. Typke, R. Hegerl, S. Volker, A. Hoffmann, K. O. Stetter, and W. Baumeister. 1993. Structure of a molecular chaperone from a thermophilic archaebacterium. Nature. 361: 475–477 Robertson, D. E., M. C. Lai, R. P. Gunsalus, and M. F. Roberts. 1992. Composition, Variation, and Dynamics of Major Osmotic Solutes in Methanohalophilus Strain FDF1. Appl. Environ. Microbiol. 58:2438-43. Roberts, M. F., M. C. Lai and R. P. Gunsalus. 1992. Biosynthetic pathways of the osmolytes Nε-acetyl-β-lysine, β-glutamine, and betaine in Methanohalophilus strain FDF1 suggested by nuclear magnetic resonance analyses. J. Bacteriol. 174:6688-6693. Sanchez, Y. and S. Lindquist. 1990. HSP104 required for induced thermotolerance. Science. 248:1112-1115. Satyal, S. H., E. Schmidt, K. Kitagawa, N. Sondheimer, S. Lindquist, J. M. Kramer, and R. I. Morimoto. 2000. Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA.97:5750-5. Shih C. J. and M. C. Lai. 2007. Analysis of the AAA+ chaperone clpB gene and stress-response expression in the halophilic methanogenic archaeon Methanohalophilus portucalensis. Microbiol. 153:2572-2583. Shih C. J. and M. C. Lai. 2012. Differentially expressed genes after hyper- and hypo-salt stress in the halophilic archaeon Methanohalophilus portucalensis. Can. J. Microbiol. 56:259-307 Sot, B., S. Banuelos, J. M. Valpuesta and A. Muga. 2003. GroEL stability and function. Contribution of the ionic interactions at the inter-ring contact sites. J. Biol. Chem. 22: 32083-32090 Street, T. O., D. W. Bolen, and G. D. Rose. 2006. A molecular mechanism for osmolyte-induced protein stability. Proc. Natl. Acad. Sci. USA. 103:13997-14002. Torarinsson, E., H. P. Klenk, R. A . Garrett. 2005. Divergent transcriptional and translational signals in Archaea. Environ. Microbiol. 7:47-54 Trent, J. D., E. Nimmesgern, J. S. Wall, F. U. Hartl, and A. L. Horwich. 1991. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature. 354:490-3. Wade, J. T., D. Castro Roa, D. C. Grainger, D. Hurd, S. J. Busby, K. Struhl, and E. Nudler. 2006. Extensive functional overlap between sigma factors in Escherichia coli. Nat. Struct. Mol. Biol. 13:806-14. Wu, B., Wawrzynow, A., Zylicz, M., Georgopoulos, C. 1996. Structure-function analysis of the Escherichia coli GrpE heat shock protein. EMBO. J. 15:4806-4816. Wu, Y., J. Li, Z. Jin, Z. Fu, and B. Sha. 2005. The crystal structure of the C-terminal fragment of yeast Hsp40 Ydj1 reveals novel dimerization motif for Hsp40. J. Mol. Biol. 346:1005-11. Xu, Z., A. L. Horwich and P. B. Sigler. 1997. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature. 388:741-750. Yifrach, O. and A. Horovitz. 2000. Coupling between protein folding and allostery in the GroE chaperonin system. Proc. Natl. Acad. Sci. USA. 97:1521-1524. Zhang, H., L. Lin, C. Zeng, P. Shen, and Y. P. Huang. 2007. Cloning and characterization of a haloarchaeal heat shock protein 70 functionally expressed in Escherichia coli. FEMS Microbiol. Lett. 275:168-74. Zhang, W., D. E. Culley, L. Nie and F. J. Brockman. 2006. DNA microarray analysis of anaerobic Methanosarcina barkeri reveals responses to heat shock and air exposure. J. Ind. Microbiol. Biotechnol. 33:784-790. Zhao, K., M. Liu, and R. R. Burgess. 2005. The global transcriptional response of Escherichia coli to induced sigma 32 protein involves sigma 32 regulon activation followed by inactivation and degradation of sigma 32 in vivo. J. Biol. Chem. 280:17758-68. Zhu X., X. Zhao, W. F. Burholder, A. Gragrov, C. M. Ogata, M. E. Gottesman, W. A. Hendrickson. 1996. Structure analysis of substrate binding by the molecular chaperone DnaK. Science. 272:1606-1614 Zietkiewicz, S., A. Lewandowska, P. Stocki and K. Liberek. 2006. Hsp70 chaperone machine remodels protein aggregates at the initial step of Hsp70–Hsp100-dependent disaggregation. J. Biol. Chem. 281:7022-7029. Zmijewski, M. A., A. J. Macario, and B. Lipinska. 2004. Functional similarities and differences of an archaeal Hsp70 (DnaK) stress protein compared with its homologue from the bacterium Escherichia coli. J. Mol. Biol. 336:539-49. Zmijewski M. A. , J. Skorko-Glonek, F. Tanfani , B. Banecki , A. Kotlarz, A. J. Macario , B. Lipińska. 2007. Structural basis of the interspecies interaction between the chaperone DnaK (Hsp70) and the co-chaperone GrpE of archaea and bacteria. Acta. Biochim. Pol. 54:245-52 Zmijewski M. A. , J. Skorko-Glonek, F. Tanfani , B. Banecki , A. Kotlarz, A. J. Macario , B. Lipińska. 2007. The DnaK chaoerine from the archaeon Methanosarcina Mazei and the bacterium Escherichia coli have different substrate specificities. Acta. Biochim. Pol. 54: 509-22 Zolkiewski, M. 2006. A camel passes through the eye of a needle: protein unfolding activity of Clp ATPases. Mol. Microbiol. 61:1094-100.
摘要: 
細胞在面臨環境逆境時,胞內蛋白可能會失去正常功能和結構。分子伴護蛋白系統在生理上扮演修復失活蛋白的角色,DnaK/DnaJ/GrpE (KJE)需要依賴ATP幫助新生成蛋白摺疊或可與分子伴護因子GroEL/ES和AAA+家族的ClpB,將蛋白去聚集化再重新摺疊受逆境壓力而變性的蛋白。真核生物和細菌中廣泛的存在KJE,但是在太古生物中只在部分高溫和中溫菌發現,同時研究非常得少。高鹽甲烷太古生物Methanohalophilus portucalensis FDF1T可生長在鹽濃為1.2到2.9 M的環境,利用自體生合成甜菜鹼 (glycine betaine) 做為滲透壓保護物質,也具有分子伴護蛋白基因clpB及groEL/S,基因表現量受到鹽度和溫度的影響。本研究以聚合酶連鎖反應和南方墨點法選殖高鹽甲烷太古生物M. portucalensis FDF1T 約3.6 kb大小的grpE-dnaK-dnaJ基因,並以反轉錄聚合酶連鎖反應和北方墨點法證實grpE-dnaK-dnaJ基因為共同轉錄單元體。由胺基酸序列分析MpDnaK在N端上具有EXXKXXXXS的ATP 鍵結位和C端受質蛋白鍵結位 (residues L366, V368, T369, L371, A387, L458),MpDnaJ具有HPD (HIS-PRO-ASP) motif可與DnaK ATP binding domain 鍵結。將MpgrpE異源表現於grpE缺陷株E. coli DA16中,在高溫逆境固態培養下生長,顯示表現MpgrpE的轉型株生長情形比宿主和表現載體的轉型株佳,顯示MpgrpE可互補EcgrpE的功能。並以北方墨點法分析顯示,grpE-dnaK-dnaJ在熱逆境41 ℃和45 ℃誘導下會分別提高5.9和6.4倍基因轉錄量。由以上結果推論,KJE系統在高溫逆境下會被誘導表現,並具有幫助蛋白修復的能力,所以有利於高鹽甲烷太古生物適應及生存在高溫的環境。

Cellular protein loses their function and structure when encountering the abiotic stress. Heat shock protein DnaK belongs to molecular chaperone and cooperates with its co-chaperone DnaJ and nucleotide exchanger GrpE. DnaK system also co-operate with these two molecular chaperone, chaperonin GroEL/GroES and ClpB belongs to the members of AAA+ protein superfamily. These three systems constitute the ATP-dependent folding function of both nascent polypeptides as well as the salvage of stress-denatured proteins. DnaK system is highly conserved and ubiquitous in eukaryotes and bacteria, but absences in some archaea and little is known about it. A 3.6 kb gene cluster arranged in order grpE-dnaK-dnaJ was cloned from Methanohalophilus portucalensis FDF1T by PCR and Southern blot. RT-PCR and Northern blot results indicated grpE-dnaK-dnaJ was transcribed into the same transcriptional unit. The amino acid sequences analysis of MpDnaK showed the conserved ATP binding domain (EXXKXXXXS) and substrate binding sites (residues L366, V368, T369, L371, A387, L458). MpDnaJ showed the ATPase binding motif HPD (HIS-PRO-ASP) and Zing binding motif (CXXCXGXG) which belongs to type I conserved motif. In vivo analyses indicated MpgrpE could rescued E. coli mutants lacking grpE gene. Northern blot results indicated the relative transcriptional levels were up-regulated by thermal stress. In coclusion, the DnaK system should be beneficial for the adaptative and survival of halophilic methanoarchaea that grown at the salt and temperature harsh solar saltern habitat.
URI: http://hdl.handle.net/11455/20347
其他識別: U0005-2008201215542100
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.