Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20349
標題: 高鹽甲烷太古生物第一類型與第二類型分子伴護因子之特性分析
Characterization of Group I and Group II Chaperonin from Halophilic Methanogenic Archaeon - Methanohalophilus portucalensis FDF1T
作者: 林勇安
Lin, Yung-An
關鍵字: 太古生物;Archaea;分子伴護因子;熱休克壓力;高鹽甲烷菌;分子伴護蛋白;Chaperonin;GroEL;GroES;thermosome;Heat shock stress;Halophilic methanogen;Molecular chaperones
出版社: 生命科學系所
引用: 林芸。2008。高鹽太古生物在溫度、鹽及氧氣逆境下化學伴護因子對分子伴護蛋白基因表現的影響。國立中興大學生命科學研究所碩士論文。 柯宗佑。2009。高鹽甲烷太古生物ClpB蛋白之特性分析。國立中興大學生命科學研究所碩士論文。 張浩文。2009。利用嗜鹽甲烷太古生物分子伴護因子GroEL和GroES提升Escherichia coli表現水溶性太古生物重組蛋白。國立中興大學生命科學系學士論文。 施朝仁。2007。分析高鹽甲烷太古生物鹽逆境反應基因與分子伴護蛋白系統。國立中興大學生命科學研究所博士論文。 Almeida, M. B., J. L. do Nascimento, A. M. Herculano, and M. E. Crespo-Lopez. 2011. Molecular chaperones: Toward new therapeutic tools. Biomed Pharmacother. 65:239–243. Amann, E., B. Ochs, and K. J. Abel. 1988. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene. 69:301-315. Anfinsen, C. B. 1972. The formation and stabilization of protein structure. Biochem. J. 128:737-749. Apetri, A. C., and A. L. Horwich. 2008. Chaperonin chamber accelerates protein folding through passive action of preventing aggregation. Proc. Natl. Acad. Sci. U S A. 105:17351-17355. Archibald, J. M., and A. J. Roger. 2002. Gene duplication and gene conversion shape the evolution of archaeal chaperonins. J. Mol. Biol. 316:1041-1050. Baldwin, R. L. 1986. Temperature dependence of the hydrophobic interaction in protein folding. Proc. Natl. Acad. Sci. U S A. 83:8069-8072. Baneyx, F., and A. A. Gatenby. 1992. A mutation in GroEL interferes with protein folding by reducing the rate of discharge of sequestered polypeptides. J. Biol. Chem. 267:11637-11644. Baykov, A. A., O. A. Evtushenko, and S. M. Avaeva. 1988. A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal. Biochem. 171:266-270. Ben-Zvi, A. P., and P. Goloubinoff. 2002. Proteinaceous infectious behavior in non-pathogenic proteins is controlled by molecular chaperones. J. Biol. Chem. 277:49422-49427. Bigotti, M. G., and A. R. Clarke. 2005. Cooperativity in the thermosome. J. Mol. Biol. 348:13-26. Bochkareva, E. S., N. M. Lissin, G. C. Flynn, J. E. Rothman, and A. S. Girshovich. 1992. Positive cooperativity in the functioning of molecular chaperone GroEL. J. Biol. Chem. 267:6796-6800. Boone, D. R., I. M. Mathrani, M. Y. Liu, J. A. G. F. Manaia, R. A. Mah, and J. E. Boone. 1993. Isolation and characterization of Methanohalophilus portucalensis sp. nov. and DNA reassociation study of the genus Methanohalophilus. Int. J. Sys. Bact. 43:430-437. Bosch, G., W. Baumeister, and L. O. Essen. 2000. Crystal structure of the beta-apical domain of the thermosome reveals structural plasticity in the protrusion region. J. Mol. Biol. 301:19-25. Braig, K., Z. Otwinowski, R. Hegde, D. C. Boisvent, A. Joachimiak, A. L. Horwich, and P. B. Siqler. 1994. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature. 371:578-586. Brocchieri, L., and S. Karlin. 2000. Conservation among HSP60 sequences in relation to structure, function, and evolution. Protein Sci. 9:476-486. Brown, A. D.1976. Microbial water stress. Bacteriol. Rev. 40:803-846. Bukau, B., and A. L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell. 92:351-366. Chen, B., D. Zhong, and A. Monteiro. 2006. Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics. 7:156. Chen, H. Y., Z. M. Chu, Y. H. Ma, Y. Zhang, and S. L. Yang. 2007. Expression and characterization of the chaperonin molecular machine from the hyperthermophilic archaeon Pyrococcus furiosus. J. Basic Microbiol. 47:132-137. Chow, I. T., M. E. Barnett, M. Zolkiewski, and F. Baneyx. 2005. The N-terminal domain of Escherichia coli ClpB enhances chaperone function. FEBS. Lett.579:4242-4248. Dai, C., L. Whitesell, A. B. Rogers, and S. Lindquist. 2007. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130:1005-1018. Danziger, O., L. Shimon, and A. Horovitz. 2006. Glu257 in GroEL is a sensor involved in coupling polypeptide substrate binding to stimulation of ATP hydrolysis. Protein Sci. 15:1270-1276. Diamant, S., A. Azem, C. Weiss, and P. Goloubinoff. 1995. Increased efficiency of GroE-assisted protein folding by manganese ions. J. Biol. Chem. 270:28387-28391. Diamant, S., N. Eliahu, D. Rosenthal, and P. Goloubinoff. 2001. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J. Biol. Chem. 276:39586-39591. Ditzel, L., J. Lowe, D. Stock, K. O. Stetter, H. Huber, R. Huber, and S. Steinbacher. 1998. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell. 93:125-138. Douglas, N. R., S. Reissmann, J. Zhang, B. Chen, J. Jakana, R. Kumar, W. Chiu, and J. Frydman. 2011. Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber. Cell 144:240-252. Doyle, S. M., J. Shorter, M. Zolkiewski, J. R. Hoskins, S. Lindquist, and S. Wickner. 2007. Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity. Nat Struct Mol Biol. 14:114-122. Dun, M. D., N. D. Smith, M. A. Baker, M. Lin, R. J. Aitken, and B. Nixon. 2011. The chaperonin containing TCP1 complex (CCT/TRiC) is involved in mediating sperm-oocyte interaction. J. Biol. Chem. 286:36875-36887. Eckburg, P. B., P. W. Lepp, and D. A. Relman. 2003. Archaea and their potential role in human disease. Infect. Immun. 71:591-596. Ellis, R. J. 1990. Molecular chaperones: the plant connection. Science. 250:954-959. Ellis, R. J. 2001. Macromolecular crowding: obvious but underappreciated. Trends. Biochem. Sci. 26:597-604. Ellis, R. J., and S. M. Hemmingsen. 1989. Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends. Biochem. Sci. 14:339-342. Ellis, R. J., and S. M. van der Vies. 1991. Molecular chaperones. Annu. Rev. Biochem. 60:321-347. Ewalt, K. L., J. P. Hendrick, W. A. Houry, and F. U. Hartl. 1997. In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell. 90:491-500. Fayet, O., T. Ziegelhoffer, and C. Georgopoulos. 1989. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J. Bacteriol. 171:1379-1385. Fenton, W. A., Y. Kashi, K. Furtak, and A. L. Horwich. 1994. Residues in chaperonin GroEL required for polypeptide binding and release. Nature. 371:614-619. Figueiredo, L., D. Klunker, D. Ang, D. J. Naylor, M. J. Kerner, C. Georqopoulos, F. U. Hartl, and M. Hayer-Hartl. 2004. Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation. J. Biol. Chem. 279:1090-1099. Garrido, C., C. Paul, R. Seigneuric, and H. H. Kampinga. 2012. The small heat shock proteins family: The long forgotten chaperones. Int. J. Biochem. Cell. Biol. doi:10.1016/j.biocel.2012.02.022. Gidalevitz, T., A. Ben-Zvi, K. H. Ho, H. R. Briqnull, and R. I. Morimoto. 2006. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science. 311:1471-1474. Gomez-Puertas, P., J. Martin-Benito, J. L. Carrascosa, K. R. Willison, and J. M. Valpuesta. 2004. The substrate recognition mechanisms in chaperonins. J. Mol. Recognit. 17:85-94. Gragerov, A., E. Nudler, N. Komissarova, G. A. Gaitanaris, M. E. Gottesman, and V. Nikiforov. 1992. Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc. Natl. Acad. Sci. U S A. 89:10341-10344. Gray, T. E., and A. R. Fersht. 1991. Cooperativity in ATP hydrolysis by GroEL is increased by GroES. FEBS. Lett. 292:254-258. Guagliardi, A., L. Cerchia, and M. Rossi. 1995. Prevention of in vitro protein thermal aggregation by the Sulfolobus solfataricus chaperonin. Evidence for nonequivalent binding surfaces on the chaperonin molecule. J. Biol. Chem. 270:28126-28132. Haak, J., and K. C. Kregel. 2008. 1962-2007: a cell stress odyssey. Novartis. Found. Symp. 291:3-15; discussion 15-22, 137-140. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmid. J. Mol. Biol. 166:557-580 Hartl, F. U., A. Bracher, and M. Hayer-Hartl. 2011. Molecular chaperones in protein folding and proteostasis. Nature. 475:324-332. Hartl, F. U., and M. Hayer-Hartl. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 295:1852-1858. Hinault, M. P., A. Ben-Zvi, and P. Goloubinoff. 2006. Chaperones and proteases: cellular fold-controlling factors of proteins in neurodegenerative diseases and aging. J. Mol. Neurosci. 30:249-265. Hinault, M. P., A. Farina-Henriquez-Cuendet, and P. Goloubinoff. 2011. Molecular chaperones and associated cellular clearance mechanisms against toxic protein conformers in Parkinson''s disease. Neurodegener Dis. 8:397-412. Hirai H., K. Noi, K. Hongo, T. Mizobata, and Y. Kawata. 2008. Functional characterization of the recombinant group II chaperonin alpha from Thermoplasma acidophilum. J. Biochem. 143:505-515. Hirtreiter, A. M., G. Calloni, F. Forner, B. Scheibe, M. Puype, J. Vandekerckhove, M. Mann, F. U. Hartl, and M. Hayer-Harti. 2009. Differential substrate specificity of group I and group II chaperonins in the archaeon Methanosarcina mazei. Mol. Microbiol. 74:1152-1168. Horovitz, A., Y. Fridmann, G. Kafri, and O. Yifrach. 2001. Review: allostery in chaperonins. J. Struct. Biol. 135:104-114. Horovitz, A., and K. R. Willison. 2005. Allosteric regulation of chaperonins. Curr. Opin. Struct. Biol.15:646-651. Horwich, A. L., W. A. Fenton, E. Chapman, and G. W. Farr. 2007. Two families of chaperonin: physiology and mechanism. Annu. Rev. Cell. Dev. Biol. 23:115-145. Kabir, M. A., W. Uddin, A. Narayanan, P. K. Reddy, M. A. Jairaipuri, F. Sherman, and Z. Ahmad. 2011. Functional Subunits of Eukaryotic Chaperonin CCT/TRiC in Protein Folding. J. Amino. Acids. doi:10.4061/2011/843206. Kalisman, N., and M. Levitt. 2010. Insights into the intra-ring subunit order of TRIC/CCT: a structural and evolutionary analysis. Pacific Symposium on Biocomputing. 15:252-259. Kampinga, H. H., and E. A. Craig. 2010. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell. Biol. 11:579-592. Kim, D. Y., and K. K. Kim. 2003. Crystal structure of ClpX molecular chaperone from Helicobacter pylori. J. Biol. Chem. 278:50664-50670. Klein, G., and C. Georgopoulos. 2001. Identification of important amino acid residues that modulate binding of Escherichia coli GroEL to its various cochaperones. Genetics. 158:507-517. Klumpp, M., W. Baumeister, and L. O. Essen. 1997. Structure of the substrate binding domain of the thermosome, an archaeal group II chaperonin. Cell. 91:263-270. Klunker, D., B. Haas, A. Hirtreiter, L. Fiqueiredo, D. J. Naylor, G. Pfeifer, V. Muller, U. Deppenmeier, G. Gottschalk, F. U. Hartl, and M. Hayer-Harti. 2003. Coexistence of group I and group II chaperonins in the archaeon Methanosarcina mazei. J. Biol. Chem. 278:33256-33267. Koike-Takeshita, A., T. Shimamura, K. Yokoyama, M. Yoshida, and H. Taquchi. 2006. Leu309 plays a critical role in the encapsulation of substrate protein into the internal cavity of GroEL. J. Biol. Chem. 281:962-967. Kusmierczyk, A. R., and J. Martin. 2003. Nested cooperativity and salt dependence of the ATPase activity of the archaeal chaperonin Mm-cpn. FEBS. Lett. 547:201-204. Kusukawa, N., and T. Yura. 1988. Heat shock protein GroE of Escherichia coli: key protective roles against thermal stress. Genes. Dev. 2:874-882. Lai, M. C., K. R. Sowers, D. E. Robertson, M. F. Roberts, and R. P. Gunsalus. 1991. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J. Bacteriol. 173:5352-5358. Large, A. T., M. D. Goldberg, and P. A. Lund. 2009a. Chaperones and protein folding in the archaea. Biochem. Soc. Trans. 37:46-51. Large, A. T., and P. A. Lund. 2009b. Archaeal chaperonins. Front. Biosci. 14:1304-1324. Lee, S., M. E. Sowa, Y. H. Watanabe, P. B. Siqler, W. Chiu, M. Yoshida, and F. T. Tsai. 2003. The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell. 115:229-240. Lewandowska, A., M. Matuszewska, and K. Liberek. 2007. Conformational properties of aggregated polypeptides determine ClpB-dependence in the disaggregation process. J. Mol. Biol. 371:800-811. Li, Y., Z. Zheng, A. Ramsey, and L. Chen. 2010. Analysis of peptides and proteins in their binding to GroEL. J. Pept. Sci. 16:693-700. Lin, Z., and H. S. Rye. 2006. GroEL-mediated protein folding: making the impossible, possible. Crit. Rev. Biochem. Mol. Biol. 41:211-239. Liou, A. K., and K. R. Willison. 1997. Elucidation of the subunit orientation in CCT (chaperonin containing TCP1) from the subunit composition of CCT micro-complexes. EMBO. J. 16:4311-4316. Liu, H., E. Kovacs, and P. A. Lund. 2009. Characterisation of mutations in GroES that allow GroEL to function as a single ring. FEBS. Lett. 583:2365-2371. Lund, P. 2011. Insights into chaperonin function from studies on archaeal thermosomes. Biochem. Soc. Trans. 39:94-98. Luan, Z., L. Linjing, K. Higaki, E.Nanba, Y. Suzuki, and K. Ohno. 2012. The chaperone activity and toxicity of anbroxol on Gaucher cells and normal mice. Article in press. Lund, P. A., A. T. Large, and G. Kapatai. 2003. The chaperonins: perspectives from the Archaea. Biochem. Soc. Trans. 31:681-685. Luo, H., P. Zhang, and F. T. Robb. 2011. Oligomerization of an archaeal group II chaperonin is mediated by N-terminal salt bridges. Biochem Biophys Res Commun. 413:389-394. Martin-Benito, J., J. Grantham, J. Boskovic, K. I. Brackley, J. L. Carrascosa, K. R. Willison, and J. M. Valpuesta. 2007. The inter-ring arrangement of the cytosolic chaperonin CCT. EMBO. Rep. 8:252-257. Mogk, A., C. Schlieker, C. Strub, W. Rist, J. Weibezahn, and B. Bukau. 2003. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity. J. Biol. Chem. 278:17615-17624. Mogk, A., T. Tomoyasu, P. Goloubinoff, S. Rudiger, D. Roder, H. Langen, and B. Bukau. 1998. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO. J. 18:6934-6949. Nian, R., D. S. Kim, L. Tan, C. W. Kim, and W. S. Choe. 2009. Synergistic coordination of polyethylene glycol with ClpB/DnaKJE bichaperone for refolding of heat-denatured malate dehydrogenase. Biotechnol. Prog. 25:1078-1085. Pereira, J. H., C. Y. Ralston, N. R. Douglas, D. Meyer, K. M. Knee, D. R. Goulet, J. A. King, J. Frydman, and P. D. Adams. 2010. Crystal structures of a group II chaperonin reveal the open and closed states associated with the protein folding cycle. J. Biol. Chem. 285:27958-27966. Pereira, J. H., C. Y. Ralston, N. R. Douglas, R. Kumar, T. Lopez, R. P. McAndrew, K. M. Knee, J. A. King, J. Frydman, and P. D. Adams. 2011. Mechanism of nucleotide sensing in group II chaperonins. EMBO. J. 31:731-740. Ranson, N. A., D. K. Clare, G. W. Farr, D. Houldershaw, A. L. Horwich, and H. R. Saibil. 2006. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes. Nat. Struct. Mol. Biol. 13:147-152. Ratajczak, E., S. Zietkiewicz, and K. Liberek. 2009. Distinct activities of Escherichia coli small heat shock proteins IbpA and IbpB promote efficient protein disaggregation. J. Mol. Biol. 386:178-189. Reading, D. S., R. L. Hallberg, and A. M. Myers. 1989. Characterization of the yeast HSP60 gene coding for a mitochondrial assembly factor. Nature. 337:655-659. Reissmann, S., C. Parnot, C. R. Booth, W. Chiu, and J. Frydman. 2007. Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nat. Struct. Mol. Biol. 14:432-440. Rizzo, M., A. J. Macario, E. C. de Macario, I. Gouni-Berthold, H. K. Berthold, G. B. Rini, G. Zummo, and F. Cappello. 2011. Heat shock protein-60 and risk for cardiovascular disease. Curr. Pharm. Des. 17:3662-3668. Rye, H. S., S. G. Burston, W. A. Fenton, J. M. Beechem, Z. Xu, P. B. Siqler, and A. L. Horwich. 1997. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature. 388:792-798. Saibil, H. R., and N. A. Ranson. 2002. The chaperonin folding machine. Trends. Biochem. Sci. 27:627-632. Sambrook, J., and D. W. Russell. 2001. Preparation and transformation of competent E. coli using calcium chloride, page 1.117-1.118. In Molecular cloning: a laboratory manual,third edition. Cold Spring Harbor Laboratory press. Cold Spring Harbor, NY. Samuel, D., T. K. Kumar, G. Ganesh, G. Jayaraman, P. W. Yang, M. M. Chang, V. D. Trivedi, S. L. Wang, K. C. Hwang, D. K. Chang, and C. Yu. 2000. Proline inhibits aggregation during protein refolding. Protein Sci. 9:344-352. Shih C. J., and M. C. Lai. 2007. Analysis of the AAA+ chaperone clpB gene and stress-response expression in the halophilic methanogenic archaeon Methanohalophilus portucalensis. Microbiol. 153:2572-2583. Tatzelt, J., S. B. Prusiner, and W. J. Welch. 1996. Chemical chaperones interfere with the formation of scrapie prion protein. EMBO. J. 15:6363-6373. Techtmann, S. M., and F. T. Robb. 2010. Archaeal-like chaperonins in bacteria. Proc. Natl. Acad. Sci. U S A.107:20269-20274. Tissieres, A., H. K. Mitchell, and U. M. Tracy. 1974. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol. 84:389-398. Vogel, M., M. P. Mayer, and B. Bukau. 2006. Allosteric regulation of Hsp70 chaperones involves a conserved interdomain linker. J. Biol. Chem. 281:38705-38711. Woese, C. R., O. Kandler, and M. L. Wheelis. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. U S A. 87:4576-4579. Woo, K. M., K. I. Kim, A. L. Goldberg, D. B. Ha, and C. H. Chung. 1992. The heat-shock protein ClpB in Escherichia coli is a protein-activated ATPase. J. Biol. Chem. 267:20429-20434. Xu, Q., B. Metzler, M. Jahangiri, and K. Mandal. 2011. Molecular chaperones and heat shock proteins in atherosclerosis. Am J Physiol Heart Circ Physiol. 302:506-514. Xu, Z., A. L. Horwich, and P. B. Sigler. 1997. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature. 388:741-750. Yamasaki, T., Y. Nakazaki, M. Yoshida, and Y. H. Watanabe. 2011. Roles of conserved arginines in ATP-binding domains of AAA+ chaperone ClpB from Thermus thermophilus. FEBS. J. 278:2395-2403. Yebenes, H., P. Mesa, I. G. Munoz, G. Montoya, and J. M. Valpuesta. 2011. Chaperonins: two rings for folding. Trends. Biochem. Sci. 36:424-432. Zeilstra-Ryalls, J., O. Fayet, L. Baird, and C. Georqopoulos. 1993. Sequence analysis and phenotypic characterization of groEL mutations that block lambda and T4 bacteriophage growth. J. Bacteriol. 175:1134-1143. Zhang, H., L. Lin, C. Zeng, P. Shen, and Y. P. Huang. 2007. Cloning and characterization of a haloarchaeal heat shock protein 70 functionally expressed in Escherichia coli. FEMS. Microbiol. Lett. 275:168-174. Zhang, J., M. L. Baker, G. F. Schroder, N. R. Douglas, S. Reissmann, J. Jakana, M. Dougherty, C. J. Fu, M. Levitt, S. J. Ludtke, J. Frydman, and W. Chiu. 2010. Mechanism of folding chamber closure in a group II chaperonin. Nature. 463:379-383. Zietkiewicz, S., M. J. Slusarz, R. Slusarz, K. Liberek and S.Rodziewicz-Motowidlo. 2010. Conformational stability of the full-atom hexameric model of the ClpB chaperone from Escherichia coli. Biopolymers. 93:47-60. mijewski, M. A., A. J. Macario, and B. Lipinska. 2004. Functional similarities and differences of an archaeal Hsp70 (DnaK) stress protein compared with its homologue from the bacterium Escherichia coli. J. Mol. Biol. 336:539-549.
摘要: 
分子伴護蛋白系統 (molecular chaperone) 普遍存在於原核生物與真核生物之間,能夠在細胞面臨外界逆境下,協助多胜肽摺疊與組裝並幫助未摺疊、部分摺疊、錯誤摺疊的蛋白摺疊成正確構型及修復、降解聚集蛋白來避免細胞受到損害。分子伴護因子 (chaperonin) 屬於分子伴護蛋白系統所獨立出來的一群,在形成雙環結構與確保蛋白摺疊過程中的正確性及失活蛋白的再摺疊都需要ATP的參與。分子伴護因子可分為二種類型,第一類型存在於細菌及真核生物的粒線體與葉綠體中;第二類型則存在太古生物與真核生物細胞質內。近年在高鹽甲烷太古生物Methanohalophilus portucalensis FDF1T 中也發現第一類型分子伴護因子groEL與groES的存在,並由轉錄分析顯示其會受到熱逆境與鹽逆境的誘導表現。接著將MpgroEL與MpgroELS構築於groEL基因缺陷大腸桿菌突變株BB4565中,由結果顯示在突變株當中表現MpGroEL和MpGroES能夠協助突變株在高溫逆境下提高存活率。此外,異源表現的MpGroEL ATPase活性測試得到每毫克蛋白於每分鐘能夠釋放出0.03 nmole的無機磷酸根,推測MpGroEL具有自體水解ATP的能力。額外添加化學伴護因子glycine betaine (0.3 M),能夠提升MpGroEL七倍的ATP水解速率,推測glycine betaine具有穩定MpGroEL蛋白結構並幫助調節其ATP水解能力。本篇研究的結果證實M. portucalensis FDF1T除了具有與細菌親源較接近的GroEL與GroES,能互補細菌GroEL和GroES的功能之外,並藉由基因體分析發現亦有第二類型分子伴護因子thermosome的序列,於三級結構分析發現thermosome特有之結構helical protrusion,因此得知在FDF1T中同時具備二種類型的分子伴護因子,應有助於高鹽甲烷太古生物適應高鹽高溫的曬鹽場極端環境。

Molecular chaperones are ubiquitous among Three Domains of living organisms. They can help correct folding and assembling of unfolded, misfolded or nascent polypeptides and reactivate aggregated proteins which were damaged by stress. Chaperonins are ubiquitous class of proteins belonged to the molecular chaperones, form double ring complexes that mediate the folding of nascent and denatured proteins in an ATP-dependent manner. The chaperonins are divided into two groups: Group I chaperonin, usually found in bacteria, mitochondria and chloroplasts from eukarya, and Group II chaperonin, occurring in archaea and the eukaryotic cytosol. Lately, genes encoded for group I chaperonin GroEL and GroES in halophilic methanogen were found. The group I chaperonin GroEL usually cooperate with GroES to prevent stress-induced protein aggregation. Transcriptional analysis indicated that groEL and groES genes from Methanohalophilus portucalensis FDF1T were up regulated by heat and salt stresses. The expression of MpGroEL and MpGroELS in groEL-null mutant strain E. coli BB4565 showed higher survival rate which accumulated less aggregated proteins than host E. coli BB4565 under high temperature environment (43�C). Furthermore, in vitro ATPase activity assays were carried out by heterologously expressed and purified MpGroEL. Specific activity of MpGroEL was 0.03 nmole Pi released per mg protein in per minute and could be enhanced to 7 folds with chemical chaperone glycine betaine (0.3 M). This study revealed the chaperonin function of MpGroELS in halophilic methanogenic archaea. In addition, the osmolyte betaine plays an important role in regulating the ATPase activity of MpGroEL. These results confirmed that MpGroEL and MpGroELS can complement the function of bacterial GroELS. Additionally, three group II chaperonin thermosome were found in the chaperonin system of M. portucalensis FDF1T and revealed it contains both group I chaperonin GroEL/ES and group II chaperonin thermosome. The co-existence of group I and II chaperonin in the halophilic methanogen may release the cellular damage from salt and temperature stresses to halophilic methanogen under solar saltern environment.
URI: http://hdl.handle.net/11455/20349
其他識別: U0005-2008201212202500
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.