Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20358
標題: (一)綠藻 (Chlorella sorokiniana T-89) glutaredoxin的晶體結構分析 (二)Picrophilus torridus海藻糖合成酶的晶體結構解析與活性分析
(一)Crystal structure determination of glutaredoxin from Chlorella sorokiniana T-89 (二)Crystal structure determination and kinetics analysis of trehalose synthase from Picrophilus torridus
作者: 粘值菀
Nien, CHih-Yuan
關鍵字: 晶體結構分析;Chlorella;谷氧還原蛋白;海藻糖合成酶;glutaredoxin;trehalose synthase
出版社: 生命科學系所
引用: 第一部分、綠藻 (Chlorella sorokiniana T-89) glutaredoxin的晶體結構分析 劉學銘與梁世中(1999)“小球藻在食品工業的應用及小球藻食品的研製”。武漢食品工業學會學報 鄭竹螢(2012) “小球藻榖氧還蛋白選殖與生化特性分析”國立中興大學食品暨應用生物科技學研究所碩士論文。 Adams, P. D. et al. (2010) “ PHENIX: a comprehensive Python-based system for macromolecular structure solution.” Acta Cryst. D 66: 213-221. Bagchi, K. and Puri, S. (1998) “Free radicals and antioxidants in health and disease.” The American oil chemists'' society. 4(2): 350-360. Berlett, B. S. and Stadtman, E. R. (1997) “Protein Oxidation in Aging, Disease, and Oxidative Stress.” J. Biol. Chem. 272(33): 20313-20316. Brunger, A. T. (1992) “Free R value: a novel statistical quantity for assessing the accuracy of crystal structures.” Nature 355(6359):472-5. Buchanan, B. B. and Balmer, Y. (2005) “Redox regulation: a broadening horizon.” Annu Rev Plant Biol. 56: 187-220. Bushweller, J. H. et al. (1992) “Structural and fnctional characterization of the mutant Escherichia coli glutaredoxin and is mixed disulfide with glutathione.” Biochemistry 31: 9288-9293. Chrestensen, C. A. (2000) “Acute Cadmium Exposure Inactivates Thioltransferase (Glutaredoxin), Inhibits Intracellular Reduction of Protein-glutathionyl-mixed Disulfides, and Initiates Apoptosis.” J. Biol. Chem. 275: 26556-26565. Cotgreave, I. A. and Gerdes, R. G. (1998) “Recent trends in glutathione biochemistry--glutathione-protein interactions: a molecular link between oxidative stress and cell proliferation?” Biochem Biophys Res Commun. 242(1): 1-9. Emsley, P. and Cowtan, K. (2004). “Coot: model-building tools for molecular graphics” Acta Cryst D 60: 2126-2132 Fernandes, et al. (2005) “A novel monothiol glutaredoxin (Grx4) from Escherichia coli can serve as a substrate for thioredoxin reductase.” J Biol Chem. 280(26): 24544-52. Fernandes, A. P. and Holmgren, A. (2004) “Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system.” Antioxidants redox signaling 6(1): 63-74. Ghezzi, P. (2005) “Oxidoreduction of protein thiols in redox regulation.” Beochem Soc Trans 33: 1378-1381. Holm, L. and Rosenstrom, P. (2010) “Dali server: conservation mapping in 3D.” Nucl. Acids Res. 38: 545-549. Haddad, J. J. (2004) “Oxygen sensing and oxidant/redox-related pathways. Biochem Biophys Res Commun 316: 969-977. Halliwell, B. et al. (1995) “Free radicals and antioxidants in food and in vivo: what they do and how they work.” Crit Rev Food Sci Nutr. 35(1-2): 7-20. Holmgren, A. and Morgan, F. J. (1976) “Enzyme reduction of disulfide bonds by thioredoxin. The reactivity of disulfide bonds in human choriogonadotropin and its subunits.” Eur J Biochem. 70(2): 377-83. Holmgren, A. (1989) “Thioredoxin and Glutaredoxin systems.” J. Biol. Chem. 264(24): 13963-13966. Isakov, N., Witte, S. and Altman, A. (2000) “PICOT-HD: a highly conserved protein domain that is often associated with thioredoxin and glutaredoxin modules.” Trends Biochem Sci. 25(11):537-9. Jung, C. H. and Thomas, J. A. (1996) “S-Glutathiolated Hepatocyte Proteins and Insulin Disulfides as Substrates for Reduction by Glutaredoxin, Thioredoxin, Protein Disulfide Isomerase, and Glutathione” Archives of Biochemistry and Biophysics 335(1): 61–72. Kantardjieff, K. A. and Rupp, B. (2003) “Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals.” Protein Science 12: 1865-1871. Kelley, L. A. and Sternberg, M. J. E. (2009) “Protein structure prediction on the web: A case study using the Phyre server.” Nature Protocols 4: 363-371. Kidd, K. M. (1997) “Glutathione: systemic protectant against oxidative and free radical damage.” Altern Med Rev. 2(3): 155-176. Lillig, C. H., Berndt, C. and Holmgren, A. (2008) “Glutaredoxin systems” Biochim Biophys Acta. 1780(11):1304-17. Lukasz, G., et al. (2007) “Tovard rational protein crystallization: A Web server for the design of crystallizable protein variants” Protein Science 16: 1569-1576. Matthews, B. W. (1968) “Solvent content of protein crystals.” J. Mo.l Biol. 33: 491-497. Meister, A. (1994) “Glutathione-ascorbic acid antioxidant system in animals.” J. Biol. Chem. 269: 9397-9400. Meyer, Y. et al. (2009) “Thioredoxins and glutaredoxins: unifying elements in redox biology.” Annu Rev Genet. 43: 335-67. Nicolas, R. et al.(2008) “The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation” Annual Review of Plant Biology 59: 143-166. Packer, J. E., Slater, T. F. and Willson, R. L. (1979) “Direct observation of a free radical interaction between vitamin E and vitamin C.” Nature 278: 737-738. Pocernich, C. B. and Butterfield, D. A. (2012) “Elevation of glutathione as a therapeutic strategy in Alzheimer disease.” Biochim Biophys Acta. 1822(5): 625-30. Pratico, D. (2001) “In vivo measurement of the redox state.” Lipids 36 Suppl: 45-7. Prinz, W. A., Aslund, F. and Holmgren, A. (1997) “The role of the disulfide bonds in th Escherichia coli cytoplasm.” J. Biol. Chem 272: 15661-15667. Pymol: The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrodinger, LLC. Spolaore, P. et al. (2006) “Commercial Applications of Microalgae.” J. Biosci. Bioeng. 101(2): 87-96. Srinivasan, U., Mieyal, P.A. and Mieyal, J. J. (1997) “pH profiles indicative of rate-limiting nucleophilic displacement in thioltransferase catalysis.” Biochemistry 36(11): 3199-206. Tamura, K., et al. (2011) “MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods.” Molecular Biology and Evolution 28: 2731-2739. Vagin, A. and Teplyakov, A. (1997) “MOLREP: an Automated Program for Molecular Replacement.” Journal of Applied Crystallography 30: 1022-1025. Vagin, A.A. et al. (2004) “REFMAC5 dictionary: organisation of prior chemical knowledge and guidelines for its use." Acta Cryst. D 60: 2284-2295. Wallace, A. C, Laskowski, R. A. and Thornton, J. M. (1995) “LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions.” Prot. Eng. 8: 127-134. Yang, Y. et al. (1998) “Reactivity of the human thioltransferase ( glutaredoxin ) C7S, C25S, C78S, C82S mutant and NMR solution structure of its glutathionyl mixed disulfide intermediate reflet catalytic specificity.” Bioxhemistry 37: 17145-17156. 第二部分、Picrophilus torridus海藻糖合成酶的晶體結構解析與活性分析 張竹瑋 (2011) “提升Picrophilus torridus 海藻糖合成酶的熱穩定性” 國立中興大學基因體暨生物資訊學研究所碩士論文。 Adams, P. D. et al. (2010) “ PHENIX: a comprehensive Python-based system for macromolecular structure solution.” Acta Cryst. D 66: 213-221. Ashkenazy, H., (2010) “ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids.” Nucl. Acids Res.38: W529-533. Avonce, N. et al. (2006) “Insights on the evolution of trehalose biosynthesis.” BMC Evol Biol. 6: 109. Chen, Y. S., Lee, G. C. and Shaw, J. F. (2006) “Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophius torridus in Escherichia coli.” J Agric Food Chem. 54: 7098-7104. Crowe, J. H., Crowe, L. M. and Chapman, D. (1984) “Preservation of membranes in an hydrobiotic organism: the role of trehalose.” Science 223: 701-703. Eis, C. et al. (2001) “Fungal trehalose phosphorylase: kinetic mechamism, pH-dependence of the reaction and some structural properties of the enzyme from Schizophyllum commune.” Biochem. 356(3): 757-67. Elbein, A. D. et al. (2003) “New insights on trehalose: a multifunctional molecule.” Glycobiology 12 (4): 17R-27R. Emsley, P. and Cowtan, K. (2004). “Coot: model-building tools for molecular graphics” Acta Cryst D 60, 2126-2132 Futterer, O. et al. (2004) “Genome sequence of Picrophilus torridus and its implications for life around pH 0.” Proc Natl Acad Sci USA 101(24): 9091-6. Higashiyama, T. (2002) “Novel functions and applications of trehalose.” Pure and Applied Chemistry 74: 1263-1269. Holm, L. and Rosenstrom, P. (2010) “Dali server: conservation mapping in 3D.” Nucl. Acids Res. 38: 545-549. Kelley, L. A. and Sternberg, M. J. E. (2009) “Protein structure prediction on the web: A case study using the Phyre server.” Nature Protocols 4: 363-371. Koh, S. et al. (2003) "Mechanistic study of the intramolecular conversion of maltose to trehalose by Thermus caldophilus GK24 trehalose synthase." Carbohydr Res 338(12): 1339-1343. Kouril, T. et al. (2008) “A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax: the unidirectional TreT pathway.” Arch Microbiol. 190(3): 355-69. Lovell, S.C. et al. (2002) “Structure validation by Calpha geometry: phi, psi and Cbeta deviation.” Proteins: Structure, Function & Genetics. 50: 437-450. Matthews, B. W. (1968) “Solvent content of protein crystals.” J Mol Biol. 33: 491-497. Muller, J., Wiemken, A. and Aeschbacher R. (1984) “Trehalose metabolism in sugar sensing and plant development.” Plant Science 147: 37-47. Nishimoto, T. et al. (1996) “Purification and characterization of a thermostable trehalose synthase from Thermus aquaticus.” Biosic Biotechnol 60(5): 835-839. Nishimoto, T. et al. (1996) “Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48.” Biosic Biotechnol. 60(4): 640-644. Ramachandran, G.N., Ramakrishnan, C. and Sasisekharan, V. (1963) "Stereochemistry of polypeptide chain configurations". Journal of Molecular Biology 7: 95-9. Reinders, A. et al. (1997) “Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatasecomplex in Saccharomyces cerevisiae and their function during heat shock.” Mol Microbiol. 24(4): 687-95. Richards, A. B. et al. (2002) "Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies." Food Chem Toxicol. 40: 871-898. Vagin, A. and Teplyakov, A. (1997) “MOLREP: an Automated Program for Molecular Replacement.” Journal of Applied Crystallography 30: 1022-1025. Vagin, A. A. et al. (2004) “REFMAC5 dictionary: organisation of prior chemical knowledge and guidelines for its use." Acta Cryst. D 60: 2284-2295. Yamamoto, et al. (2010) “Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose” FEBS J. 277(20): 4205-14.
摘要: 
(一) 細胞內的還原狀態對於細胞存活和增生等生理功能來說很重要,為了維持細胞內還原環境,細胞利用兩大系統thioredoxin (Trx) 和glutaredoxin (Grx) 作為氧化還原的調控。Grx屬於廣泛存在各種生物體內的小型抗氧化酵素,主要功能是透過本身cysteine殘基,以glutathione (GSH) 當作電子的提供者,還原兩種蛋白質中雙硫鍵型態,分別為因為氧化壓力所形成的蛋白質內雙硫鍵,以及藉由GSH與蛋白質形成的共價雙硫鍵。為了能更了解綠藻中Grx的氧化還原機制,我們解析氧化態與還原態Grx晶體結構,發現Chlorella sorokiniana T-89 的Grx 屬於thioredoxin fold superfamily,序列則類似人類的Grx2,並且觀察到氧化態Grx由活性區域Cys25和Cys28形成分子內雙硫鍵,而還原態Grx則有多個胺基酸和GSH之間形成交互作用力,這有可能是Grx在一般的情況下,GSH會嵌入Grx的催化活性位,保護催化活性位不受到自由基攻擊;另一種是推測,我們得到的還原態結晶是Grx以glutathionylation的狀態共價結合GSH,因為加入DTT,打斷了GSH與 Grx的共價鍵。我們根據NCBI BLAST和Dali server做進一步相似序列及結構的搜尋,選出人類、酵母菌以及大腸桿菌的Grx做比較,試著了解各個物種間結構與酵素和受質親和力的關係,再藉由比較氧化態與還原態Grx Grx-binding pocket,觀察在不同狀態下,胺基酸側鏈的方向移動與角度的改變,這項研究有助了解Chlorella sorokiniana T89 Grx在氧化還原平衡中,來達到抗氧化的作用。

(二) 海藻糖(trehalose)可以添加於食品、醫藥等產品中,在商業上具有重要的經濟價值。海藻糖合成酶(trehalose synthase)具有一步將受質麥芽糖轉化為海藻糖的酵素活性,因此海藻糖的生產因為主要以海藻糖合成酶為主。到目前為止有許多微生物物種的海藻糖合成酶的酵素活性相關研究,但是還沒有海藻糖合成酶的晶體結構被發表,因此本實驗嘗試解析出一株嗜熱嗜酸性的古生菌的海藻糖合成酶(Picrophilus torridus trehalose synthase, PTTS)晶體結構,並做結構分析,現在仍在繼續進行晶體結構各個數據的最佳化,以便得到較具可信度的蛋白質結構。另一方面也藉由分析PTTS酵素動力學性質,以便於更加了解酵素的表現與活性。

(一)Intracellular redox status plays an important role in cell functions, such as cell survival and proliferation. To maintain a reduced intracellular redox state, cell utilizes protein redox systems, thioredoxin (Trx) and glutaredoxin (Grx) systems. Glutaredoxins are small dithiol proteins, and can be found in many prokaryotes and eukaryotes, including humans. This system catalyzes thiol-disulfide exchange reactions or protein-mixed glutathione disulfides reduction to maintain thiol redox status of the cytosol by using glutathione (GSH) as the electron donor. To gain more knowledge on redox regulation in the single-celled green algae Chlorella, the recombinant Grx from Chlorella sorokiniana T-89 was crystallized in both oxidized and reduced states. The overall structure of Grx resembles the fold of the Trx superfamily, and Grx shares sequence similarity with human Grx2. In the active site of the oxidized Grx, Cys25 and Cys28 forms a disulfide bond. In the reduced Grx structure, glutathione makes several polar contacts with Grx. In normal state, GSH embedded in Grx catalytic active site, it may protect the catalytic activity site from free radical attacked. In the reduced status Grx would alter some side-chain conformation to accommodate GSH. We also used NCBI BLAST and the Dali the server to do a further search for similar sequences and structures of different species of Grx. We try to understand the relationship of structure and enzyme and substrate affinity between the various species This study would be very helpful for understand how Chlorella sorokiniana T89 Grx to regulate a reduced intracellular redox state to defense of oxidative stress.

(二)Trehalose (trehalose) is an important economic value in the business, because it can be added to food, medicine and other products. Trehalose synthase can catalyze the conversion of maltose into trehalose in one step. Therefore, trehalose synthase is the main method to product trehalose. So far, trehalose synthase activity from many microbial species was published, but the crystal structure of the trehalose synthase was not published yet. So this experiment is to try to determine the protein structure of trehalose synthase from a thermophilic and acidophilic archaea Picrophilus torridus, and structural analysis. Now We are trying to optimizethe the crystal structure data. The other hand, the analysis of the PTTS enzyme kinetic characteristics can understand the activity of the enzyme.
URI: http://hdl.handle.net/11455/20358
其他識別: U0005-2907201215463200
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.