Please use this identifier to cite or link to this item:
標題: 圖案化氧化鋁/金屬同軸奈米柱陣列製備
Fabrication of patterned alumina-metal coaxial nanorod arrays
作者: 許哲瑋
Hsu, Che-Wei
關鍵字: nanorod;奈米柱;patterned;coaxial;圖案化;同軸
出版社: 機械工程學系所
引用: [1] S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354 (1991). [2] H. W. Kroto, J. R. Heath, S. C. O`Brien, R. F. Curl, R. E. Smalley, “C60: Buckminsterfullerene,” Nature 318, 162 (1985). [3] W. I. Park, G-C Yi, M. Kim, and S. J. Pennycook, “Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures,” Adv. Mater. 15 (6), 526-529 (2003). [4] Y. T. Pang, G. W. Meng, L. D. Zhang, W. J. Shan, C. Zhang, X. Y. Gao, A. W. Zhao, and Y. Q. Mao, “Electrochemical synthesis of ordered alumina nanowire arrays,” J Solid State Electrochem 7, 344-347 (2003). [5] G. B. Ji, W. Chen, S. L. Tang, B. X. Gu, Z. Li, and Y. W. Du, “Fabrication and magnetic properties of ordered 20 nm Co-Pb nanowire arrays,” Solid State Communications 130, 541-545 (2004). [6] M. Mikhaylova, M. Toprak, D. K. Kim, Y. Zhang, and M. Muhammed, “Nanowire formation by electrodeposition in modified nanoporous polycrystalline anodic alumina templates,” Mat. Res. Soc. Symp. Proc. 704 (2002). [7] Y. Fanga, D. Agrawala, G. Skandanb, and M. Jainb, “Fabrication of translucent MgO ceramics using nanopowders,” Materials Letters 58, 551- 554 (2004). [8] X. Wang, G. R. Han, “Fabrication and characterization of anodic aluminum oxide template,” Microelectronic Engineering 66, 166-170 (2003). [9] Martin CR. “Nanomaterials: a membrane-based systhetic approach,” Science, 266:1961-1966. (1994). [10] H. Masuda, K. Fukuda. “Alumina nanoporous structures,” Science, 268, 1466-1468 (1995). [11] Yang P, Wu Y, Fang R. “Inorganic semiconductor nanowires,” Int. J. Nanosci, 1:1-39. (2002). [12] Wang PI, Zhao YP, Wang GC, Lu TM. “Novel growth mechanism of single crystalline Cu nanorods by electron beam irradiation,” Nanotechnology, 15: 218-222. (2004). [13] Lisiecki I, Sack-Kongehl H, Weiss K, Urban J, Pileni MP. “Annealing process of anisotropic copper nanocrystals. 2. rods,” Langmuir, 16: 8807-8808. (2000). [14] Gao T, Meng GW, Zhang J, Wang YW, Liang CH, Fan JC, Zhang LD. “Template synthesis of single-crystal Cu nanowire arrays by electrodeposition,” Materials Science and Processing, v 73, n 2, p 251-254. (2001). [15] Zach MP, Ng KH, Penner RM. “Molybdenum nanowires by electro deposition,” Science, 290:2120-2123. (2000). [16] Wang HW, Shieh CF, Chen HY, Shiu WC, Russo B, Cao G. “Standing [111] gold nanotube to nanorod arrays via template growth,” Nanotechnology, v 17, n 10, May 28, p 2689-2694. (2006) [17] S. K. Hwang, J. Lee, S. H. Jeong, P. S. Lee, and K. H. Lee, “Fabrication of carbon nanotube emitters in an anodic aluminium oxide nanotemplate on a Si wafer by multi-step anodization,” Nanotechnology 16, 850-858 (2005). [18] W. J. Yu, Y. S. Cho, G. S. Choi, and D. Kim, “Patterned carbon nanotube field emitter using the regular array of an anodic aluminium oxide template,” Nanotechnology 16, 291-295 (2005). [19] T. Yanagishita, K. Nishio, and H. Masuda, “Fabrication of Metal Nanohole Arrays with High Aspect Ratios Using Two-Step Replication of Anodic Porous Alumina,” Adv. Mater. 17 (18), 2241-2243 (2005). [20] L. Kim, S. M. Yoon, J. Kim, and J. S. Suh, “Controllable fabrication of tube-in-tubes using anodic aluminum oxide templates,” Synthetic Metals. 140, 135-138 (2004). [21] E. J. Bae, W. B. Choi, K. S. Jeong, J. U. Chu, G. S. Park, S. Song, and I. K. Yoo, “Selective Growth of Carbon Nanotubes on Pre-patterned Porous Anodic Aluminum Oxide,” Adv. Mater. 14 (4), 277-279 (2002). [22] A. A Tseng, K. Chen, CD Chen, KJ Ma, “Electron Beam Lithography in Nanoscale Fabrication: Recent Development,” IEEE Transactions on Electronics Packaging Manufacturing 26 (2), 141-149 (2003). [23] N. Jiang, G. C. Hembree, and J. C. H. Spence, “Nanoring formation by direct-write inorganic electron-beam lithography Applied,” physical Letters 83 (3), 551-553 (2003). [24] K. Wang, A. Chelnokov, S. Rowson, P. Garoche, J. M. Lourtioz, “Focused-ion-beam etching in macroporous silicon to realize three-dimensional photonic crystal,” Appl. Phys. 33, 119-123 (2000). [25] M. M. Mitan, D. P. Pivin, L. T. Alford, J. W. Mayer, “Patterning of nanometer-scale silicide structures on silicon by ‘direct writing focus ion-beam implantation',” Thin Solid Films 441, 2(2002). [26] T. Ono, S. Yoshida, M. Esashi, “Electrical modification of a conductive polymer using a scanning probe microscope,” nanotechnology 14, 1051-1054 (2003). [27] S. Hiroyuki, N. Nobuyuki, “AFM lithography in constant current mode,” nanotechnology 8, 15-18 (1997). [28] Nielsch K, Müller F, Li AP, Gösele U. “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Advanced Materials, v 12, n 8, p 582-586, Apr, (2000). [29] Moon JM, Wei A. “Uniform gold nanorod arrays from polyethylenimine-coated alumina templates,” J. Phys. Chem. B 109:23336-23341. (2005) [30] Meng G., Cao A, Cheng JY, Vijayaraghavan A, Jung YJ, Shima M, Ajayan PM. “Ordered Ni nanowire tip arrays sticking out of the anodic aluminum oxide template,” Journal of Applied Physics, v 97, n 6, p 064303(2005) [31] Israelachvili J. “Intermolecular and Surface Forces,” 2nd ed., Academic, New York (1991). [32] Jong-Hyun Jeong, Sun-Hong Kim, Ji Hyun Min, Young Keun Kim, Sung-Soo Kim, “High-frequency noise absorbing properties of nickel nanowire arrays prepared by DC electrodeposition,” Physica Status Solidi (A) Applications and Materials, v 204, n 12, December, p 4025-4028 (2007). [33] Cai-Ling Xu, Hua Li, Guang-Yu Zhao and Hu-Lin Li, ”Electrodeposition and magnetic properties of Ni nanowire arrays on anodic aluminum oxide/Ti/Si substrate,” Applied Surface Science, v 253, n 3, Nov 30, p 1399-1403 (2006). [34] Cai-Ling Xu, Hua Li, Guang-Yu Zhao and Hu-Lin Li, “Electrodeposition of ferromagnetic nanowire arrays on AAO/Ti/Si substrate for ultrahigh-density magnetic storage devices,” Materials Letters, v 60, n 19, August, p 2335-2338, (2006). [35] A. Uhlir, “Electrolytic shaping of germanium and silicon. Bell System Tech,” J. 35, 333-347 (1956). [36] F. Keller, M. S. Hunter, and D. L. Robinson, “Structural features of oxide coatings on aluminium,” J. Electrochem Soc, 100, 411-419 (1953). [37] R. B. Wehrspohn, J. N. Chazalviel, F. Ozanam, “Electrochemical preparation of porous semiconductors: from phenomenology to understanding,” Materials Science & Engineering B, 69-70, 1-10 (2000). [38] S. Langa, I. M. Tiginyanu, J. Carstensen, M. Christopherser, and H. Föll, “Formation of porous layer with different morphologies during anodic etching of n-Inp,” J. Electroche,. Soc. Lett, 3, 514-516 (2000). [39] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, “Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism,” Nature, 359, 710-712 (1992). [40] F. Li, L. Zhang, R. M. Metzger, “On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide,” Chem. Mater, 10, 2470-2480 (1998). [41] H. Masuda, F. Hasegwa, S. Ono, “Self-ordering of cell arrangement. of anodic porous alumina formed in sulfuric acid solution,” J. Electrochem. Soc. 144, 127-130 (1997). [42] G. E. Thompson, “Porous anodic alumina: fabrication,characterization and applications,” Thin Solid Film 297, 192-201 (1997). [43] G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Good Nucleation, “Growth of Porous Anodic Film on Aluminium,” Nature 272, 433-435 (1978). [44] K. Shimizu, S. Kobayashi, G. E. Thompson, and G. C. Wood, “Electron Beam Induced Crystallization of Anodic Barrier Films on Aluminium: Influence of incorporated anions,” J. Appl. Electrochem. 15, 781-783 (1985). [45] O. Jessensky, F. Mu¨ ller, and U. Gosele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett. 72 (10), 1173-1175 (1998). [46] H. Masuda. H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamaura, “Highly ordered nanochannel-array. architecture in anodic alumina,” Appl. Phys. Lett. 71 (19), 2770-2772 (1997). [47] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,“ J Appl. Phys. 84 (11), 6023-6026 (1998). [48] H. Masuda, K. Fukuda, " Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science 268, 1466-1468 (1995). [49] H. Masuda, K. Yada, A. Osaka, “Self-Ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,” Jpn. J. Appl. Phys. 37, 1340-1342 (1998). [50] A. A. Mazhar, F. E. Heakal, and K. M. Awad, ”Some formation factors affecting the dissolution behaviour of anodic oxide films on aluminum in H3PO4,” Thin Solid Films 192, 193-199 (1990). [51] S. Ping Lee, Nucl. Sci. J. (15), 235-244 (1978). [52] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and Triangular Nanohole Array Architectures in Anodic Alumina,” Adv. Mater. 13 (3), 189-192 (2001) [53] C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Appl. Phys. Lett. 78 (1), 120-122 (2001). [54] Jong-Hyun Jeong, Sun-Hong Kim, Ji Hyun Min, Young Keun Kim, and Sung-Soo Kim, “High-frequency noise absorbing properties of nickel nanowire arrays prepared by DC electrodeposition,” phys. stat. sol. (a) 204, No. 12, 4025-4028 (2007). [55] F. Tian, J. Zhu, and D. Wei, “Fabrication and Magnetism of Radial-easy-magnetized Ni Nanowire Arrays,” J. Phys. Chem. C, 111, 12669-12672 (2007) [56] Nature, vol. 290, 19, march (1981)

In this research, the orderly uneven barrier-layer surface of an anodic aluminum oxide (AAO) membrane was used as a template. The surface structure of the barrier-layer was modified by etching using phosphoric acid. Following, certain specific area of the barrier-layer was then removed by photolithographic process. A thin Au film was deposited on the photolithographic patterned barrier-layer surface by evaporation as the electrode for further electrochemical deposition. Nickel nanorods were electrochemically deposited into the nanochannels of the patterned AAO template. Phosphoric acid was then used to gradually etch off the alumina that enclosed each individual metal nanorod to form a alumina-metal coaxial nanorod array.
The alumina/nickel coaxial structure was characterized by energy dispersive X-ray (EDS) analysis, transmission electron microscope (TEM) analysis, and selected area electron diffraction (SEAD) analysis. The high aspect ratio of the alumina-metal coaxial nanorods with the alumina shell insulator are suitable for use as nano probes or electrodes capable of penetrating the cell membrane, and hence being able to sense the biological functions within the cells.
其他識別: U0005-1707200822004900
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.