Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2040
DC FieldValueLanguage
dc.contributor陳志敏zh_TW
dc.contributorJerry M. Chenen_US
dc.contributor陳維隆zh_TW
dc.contributorWei-lung Chenen_US
dc.contributor.advisor郭正雄zh_TW
dc.contributor.advisorCheng-Hsiung Kuoen_US
dc.contributor.author羅宗義zh_TW
dc.contributor.authorLo, Tsung-Yien_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-05T11:42:25Z-
dc.date.available2014-06-05T11:42:25Z-
dc.identifierU0005-1808200806344600zh_TW
dc.identifier.citation[1]. Stix, Gary, "A Climate Repair Manual," Scientific American, September 2006, pg 46. [2].http://www.cru.uea.ac.uk/cru/info/warming/gtc2007.pdf [3]. Neeraj Mittal , Investigation of Performance Characteristics of a Novel VAWT, Department of Mechanical Engineering, University of Strathclyde,2001. [4]. Tony Burton, Wind energy handbook, JOHN WlLEY & SONS, LTD, 2001. [5]. J.F. Manwell, Wind energy explained, JOHN WlLEY & SONS, LTD, 2002. [6] Jianhui Zhang,Numerical Modeling of Vertical Axis Wind Turbine (VAWT), Department of Mechanical Engineering , Technical University of Denmark, 2004. [7]. R. A. Serway, J.W. Jewett. Jr, Physics for scientists and engineers with modern physics,6th ed, Thomson-Brooks/Cole, 2003. [8]. R.C.Hibbeler, Engineering mechanics Dynamics, 2th ed ,Prentice Hall,2002. [9]. I.H.Abbott, A.E. Von Doenhoff, Theory of wing sections, Dover,1959. [10]. http://www.cwb.gov.tw/V5/index.htm [11]. Fluent 6.3, Documentation, User’s Guide, Fluent Inc, 2006. [12]. Fluent 6.3, Documentation, Tutorial Guide, Fluent Inc, 2006. [13]. Fluent 6.3, Documentation, UDF Manual, Fluent Inc, 2006. [14]. Xiao Hu, Dynamic Mesh Modeling, Documentation, Fluent Inc, 2006. [15]. 陳正和, 風力發電之應用和效益, 台電月刊, 2006, Vol. 527, pp. 30-36.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/2040-
dc.description.abstract本研究係針對小型直立軸風力發電機的風力葉片進行流場的數值分析。也就是利用流體分析軟體(Fluent)進行風力葉片被動承受流體力量後的運動以及流場之分析,透過葉片的流場與受力分析可以找出渦輪葉片的輸出扭矩,了解發電能量的性能以及其改進對策。 首先,吾人以一具有同軸、三翼式風力葉片的小型直立軸風力發電機為對象,其翼型為NACA4412(弧形翼型)及NACA0018(對稱翼型)等二維翼型,利用Fluent 軟體中的動態網格流體分析的技術,分析旋轉葉片繞著垂直軸旋轉作剛體運動時,周圍流域中之流場結構以及葉片受力特性。本文的研究發現如下: 1.透過電腦分析發現:使用NACA4412的翼型進行分析,其結果顯示密度比為0.41較其他兩種密度比的葉片擁有較佳的輸出性能。 2.無論在低風速(4m/s)或在高風速(12m/s) 的環境下,對稱翼型 (NACA0018)者在動能、扭矩的輸出性能(大約4倍)皆優於弧形翼型者(NACA4412)。換言之,對稱翼型比弧形翼型更適用於垂直軸型風力發電機(VAWT)。zh_TW
dc.description.abstractThis thesis studies the flow characteristics and output performance of a small vertical axis wind turbine (VAWT ) by way of numerical simulation. The CFD software, Fluent, is employed to analyze the flow characteristics around the rotating airfoils and the output torque for the specified VAWT. According to the results, the related output performance (instantaneous torque and the rotating kinetic energy) of the VAWT will be evaluated for the first step to design of a small VAWT. We employ a small-sized vertical axis wind turbine with three blades rotating about a common axis. The blade cross section or airfoil is two-dimensional and in either a NACA4212 or a NACA 0018 profile. During the simulation, the dynamic mesh technique is adopted to investigate the deforming flow domain near the blades rotating about a common axis. The flow characteristics around the blade are analyzed and the instantaneous torque is output as the basis for the performance evaluation criteria. Some important findings are concluded as follows: 1. For the cambered blade (NACA4412), the blade mass of 0.41 density ratio generates more power than two other density ratios for the specified VAWT. 2. For either low (4 m/s) or high (12 m/s) wind speeds, the performance in terms of kinetic energy and the output torque is about 4 times higher for NACA0018 (symmetry) profile than NACA4412 (cambered). To implement in the small-sized VAWT, the symmetric blade profile is more suitable than the cambered blade profile.en_US
dc.description.tableofcontents摘要……………………………………………………………………I Abstract………………………………………………………………II 誌謝……………………………………………………………………III 目錄……………………………………………………………………IV 圖目錄…………………………………………………………………VII 表目錄…………………………………………………………………XI 第一章 諸論 1-1 前言………………………………………………………1 1-2 文獻回顧…………………………………………………2 1-3 研究目的…………………………………………………4 第二章 剛體動力學與翼型斷面空氣流體力學 2-1 剛體動力學………………………………………………6 2-2 固定軸旋轉可變角速度運動……………………………8 2-3 翼型斷面空氣流體力學 ………………………………10 2-3-1 升力原理 ………………………………………11 2-3-2機翼壓力係數 ………………………………… 14 2-3-3機翼升力係數 與阻力係數 ……………… 14 2-3-4弧型翼(Cambered Airfoil)斷面的空氣流體力學特性…………15 第三章 電腦流體分析及分析方法 3-1 翼型斷面電腦流體分析………………………………16 3-2 NACA 4412 靜態電腦流體分析………………………….17 3-3 剛體運動和流體力學的關聯性設定………………………21 3-4 Fluent 6dof動態網格法……………………………………23 第四章 結果與討論 4-1 NACA 4412 靜態電腦流體分析結果……………………31 4-2 NACA 4412 三翼片靜態電腦流體分析結果……………33 4-3 Fluent 6dof動態網格法電腦流體分析結果………………36 4-3-1 NACA4412(D:0.41)電腦流體分析結果……………36 4-3-2 NACA4412不同密度分析比對……………………41 4-3-3 NACA 0018對稱翼型分析結果………………………43 4-3-4 NACA4412和NACA0018 分析結果比對………50 4-3-5 NACA 0018 VS NACA 4412 額定風速(12m/s)性能的比對…………51 第五章 結論與建議 5-1 結論…………………………………………………………54 5-2 建議…………………………………………………………55 附錄 A 參考文獻…………………………………………………56 附錄 B 風力葉片旋轉時,不同角度的流場壓力和速度分佈圖……58 附錄 C 風力相關資料…………………………………………………73 附錄 D 川流式水力發電機…………………………………………77 附錄 E 神鋼電機小型直立軸風力發電機…………………………78zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1808200806344600en_US
dc.subjectVAWTen_US
dc.subject垂直軸風力發電機zh_TW
dc.subjectFlow Drivenen_US
dc.subjectCoupled Motionen_US
dc.subject流體驅動zh_TW
dc.subject藕合運動zh_TW
dc.title小型垂直軸風力發電機流體驅動葉片運動電腦流體分析zh_TW
dc.titleThe flow driven coupled motion analysis of wind turbine for small vertical axis wind turbineen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.