Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2053
標題: 十二軸雙足機器人低階伺服控制系統設計與製作—使用控制器區域網路(CAN)
CAN Bus-based Low-Level Servo Control Design and Implementation for a Twelve-axis Biped Walking Robot
作者: 陳冠任
Chen, Kuan-Jen
關鍵字: biped robot;雙足機器人;fuzzy PID control;CAN Bus;模糊PID控制;控制器區域網路
出版社: 機械工程學系所
引用: [1] 高琦凱, “雙足機器人的設計製作與步態規劃及嵌入式單軸伺服控制器實作,” 國立中興大學機械工程研究所, 碩士論文, 2007. [2] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The Development of Honda Humanoid Robot,” in Proc. IEEE Int. Conf. Robotics and Automation, pp. 1321–1326, 1998. [3] Samsung, S3C2440A Data Sheet, 2004. [4] Microchip, dsPIC30F4011/4012 Data Sheet, 2005. [5] L. X. Wang, A Course in Fuzzy Systems and Control, Prentice Hall, 2005. [6] B. Wittenmark, “Computer Control: An Overview,” Technical Report, Department of Automatic Control, Lund Institute of Techology, Sweeden, 2004. [7] J. Xu and X. Fen, “Design of Adaptive Fuzzy PID Tuner Using Optimization Method,” Proc. 5th World Congress on Intelligent Control and Automation, pp. 2454–2458, China, 2004. [8] F. H. Ali and M. M. F. Algreer, “Fuzzy PID Control for Positioning Plants with Uncertain Parameters Variation,” Information and Communication Technologies ICTTA’06, Vol. 1, pp. 1428–1433, 2006. [9] J. Xu, X. Fen, B. Mirafzal, and N. A. Demerdash, “Application of Optimal Fuzzy PID Control for Nonlinear Induction Motors,” Proc. 6th World Congress on Intelligent Control and Automation, pp. 3953–3957, 2006. [10] B. K. Nguyen and K. K. Ahn, “Position Control of Shape Memory Alloy Actuators by Using Self Tuning Fuzzy PID Controller,” Int. J. of Control, Automation, and Systems, Vol. 4, No. 6, pp. 756-762, 2006. [11] Microchip, MCP2510 Data Sheet, 2002. [12] ZMP Inc., “e-nuvo,” http://www.zmp.co.jp/e-nuvo/jp/ [13] K. J. Åström and B. Wittenmark, Adaptive Control, 2nd Ed, Addison-Wesley, Reading, MA, 1995. [14] J. Jantzen, “Design of Fuzzy Controllers,” Technical Report, Department of Automatic Control, Lund Institute of Techology, Sweden, 2004. [15] G. Ellis, Control Systems Design Guide, 2nd Ed., Academic Press, 2006. [16] H. W. Huang, PIC Microcontroller: An Introduction to Software and Hardware Interfacing, Thomson, Canada, 2005. [17] 長高科技, ARM9 S3C2440嵌入式系統實作-ADS應用實驗篇, 長高科技圖書, 2005. [18] R. J. Schilling and S. L. Harris, Fundamentals of Digital Signal Processing Using Matlab, Thomson, 2005. [19] 李浩誠, “三軸奈米平台之離散時間適應控制及嵌入式ARM微控制器實現,” 國立中興大學機械工程研究所, 碩士論文, 2004. [20] Allegro, A3953 Data Sheet, 2000. [21] 王見名和鄒應嶼, “印刷電路板佈局指導原則,” 國立交通大學電機與控制工程研究所, 技術報告. [22] J. Cartinhour, Digital Signal Processing:An Overview of Basic Principles, Prentice Hall, 2000. [23] Philips, PCA82C250 Data Sheet, 2000. [24] 楊欣平, “十二自由度雙足步行機器人之解析動力學模式與控制設計,” 國立中興大學機械工程研究所, 碩士論文, 2007.
摘要: 
本論文實際設計製作一雙足機器人十二關節軸的低階伺服控制系統。該系統是藉由三十二位元嵌入式微控制器(ARM9)作為主控制器及四個十六位元微控制器(dsPIC30F4012)作為副控制器搭配組合而成,且控制器與控制器之間是利用控制器區域網路(CAN)作為資料傳輸的界面。主控制器(ARM9)主要是負責傳送十二軸即時的期望軌跡給副控制器;副控制器(dsPIC30F4012)則是負責實現各關節軸的低階伺服控制。
在低階伺服控制部份,首先建立傳統數位PID控制律,再結合模糊系統,進行Kp、Ki、Td線上調整,形成可調式的模糊PID控制器,並結合使用摩擦力補償,以及嘗試使用命令領先修正的方式,降低皮帶鬆弛的影響,使各關節軸能具有較複雜的軌跡追踪能力。
本研究中利用類比位置感測器(電位計)取得各關節軸角度回授訊號,由於雜訊過多,所以再設計五階Butterworth類比低通抗混疊濾波器以及二十階的數位低通濾波器,藉以濾除高頻雜訊增加回授訊號的準確性,提昇低階伺服控制的效果。

In this thesis, we design and construct a low-level servo control system for a biped walking robot. This system consists of a 32-bit master microcontroller (ARM9) and four 16-bit slave microcontrollers (dsPIC30F4012). Furthermore, we also construct a CAN-based(Controller Area Network-based) microcontroller network, composed of the master and slave microcontrollers. The main controller (ARM9) is responsible for the real-time transmission of the 12 joint-command trajectories to the 4 slave controllers, and the slave controllers (dsPIC30F4012) are responsible for the servo control of the joint actuators (DC motors) and for the sensor feedback signals transmission back to the master controller.
In the low-level servo control of each joint axis, we use fuzzy PID controller. The PID parameters Kp, Ki, Td are tuned online by their fuzzy systems. Friction compensation is integrated in the fuzzy PID controller for improving the control performance. In order to compensate for the effects of elastic deformation of the timing belts, a simple command-shift method is used to reduce the tracking errors.
Since the feedback signals from the analog position sensors may contain serious noises, in each servo system, we design a fifth-order Butterworth analog low-pass anti-aliasing filter and a 20th-order digital low-pass filter for the filtering of possible high-frequency noises to improve the quality of the feedback signal and thus the control performance.
URI: http://hdl.handle.net/11455/2053
其他識別: U0005-1908200816513200
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.