Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2059
DC FieldValueLanguage
dc.contributor劉明山zh_TW
dc.contributor陳志敏zh_TW
dc.contributor.advisor簡瑞與zh_TW
dc.contributor.author廖振程zh_TW
dc.contributor.authorLiao, Cheng-Chenen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-05T11:42:26Z-
dc.date.available2014-06-05T11:42:26Z-
dc.identifierU0005-2008200815184000zh_TW
dc.identifier.citation【1】F.A. Morrison, J.F. Osterle, J. Chem. Phys. 43 (1965) 2111-2114 【2】X. Xuan, D. Li, Thermodynamic analysis of electrokinetic energy conversion, Journal of Power Sources 156 (2006) 677-684 【3】J.Y. Min, E.F. Hasselbrink, S.J. Kim, On the efficiency of electrokinetic pumping of liquids through nanoscale channels, Sensor and Actuators B 98 (2004) 368-377 【4】H.J. Frank, van der Heyden, D. Stein, C. Dekker, Streaming currents in a single nanofluidic channel , Physical Review Letters PRL 95 (2005) 116104-116108 【5】H. Daiguji, P. Yang, A. Majumdar, Ion transport in nanofludic channels , Nano Letters 4 No.1 (2004) 137-142 【6】T. Postler, Z. Slouka, M. Svoboda, M. Pribyl, D. Snita, Parametrical studies of electroosmotic transport characteristics in submicrometer channels , Journal of Colloid and Interface Science 320 (2008) 321-332 【7】N. Scales, R.N. Tait, Modellng electroosmotic and pressure-driven flows in porous microfluidic devices: Zeta potential and porosity changes near the channel walls ,The Journal of Chemical Physics 125, (2006) 094714 【8】A. Mansouri, C. Scheuerman, S. Bhattaacharjee, D.Y. Kwok, L. W. Kostiuk , Transient streaming potential in a finite length mocrochannel, Journal of Colloid and Interface Science 292 (2005)567-580 【9】Y. Kang, C. Yang, X. Huang, Analysis of the electroosmotic flow in a microchannel packed with homogeneous microspheres under electrokinetic wall effect , International Journal of Engineering Science 42 (2004) 2011-2027 【10】H. Daiguji, P. Yang, A.J. Szeri , A. Majumdar , Electrochemo- mechanical energy conversion in nanofluidic channels , Nano Letters 4, (2004) 2315-2321 【11】H.J. Frank, van der Heyden, D.J. Bonthuis, D. Stein, C. Meyer , C. Dekker , Electrokinetic energy conversion efficiency in nanofluidic channels , Nano Letters 6 (2006) 2232-2237 【12】M.C. Lu, S.S. Satyanarayana, R. Karnik, A. Majumdar, C.C. Wang, A mechanical-electrokinetic battery using a nano-porous membrane 【13】Hunter, R J. Zeta Potential in Colloid Science; Academic Press: London, 1981 【14】J. Israelachvili, Intermolecular and Surface Force, second ed., Academic Press, London, 1992. 【15】J.F. Osterle, Electrokinetic energy converson J. Appl. Mech.31 (1964) 161-4 【16】D. Li, Electrokinetics in Microfludics, Elsevier Academic Press, Burlington,MA,2004. 【17】Y.G. Gu and D.Q. Li, J. Colloid Interface Sci.226,328 (2000). 【18】Brett, C.M.A.; Brett, A. M. O. Electrochemistry, principles,methods, and applications;Oxford University Press: Oxford,1993 【19】H. Daiguji, Y. Oka , T. Adachi , K. Shirono , Theoretical study on the efficiency of nanofluidic batteries , Electrochemistry Communications 8 (2006) 1796-1800 【20】J.Y. Min, E.F. Hasselbrink, S.J. Kim, on the efficiency of electrokinetic pumping of liquids through nanoscale channels, Sensor and Actuators B 98 (2004) 368-377zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/2059-
dc.description.abstract在這次研究中,電動能量轉換包含了使用薄膜做為材料而產生的電功率。以薄膜結構特性為基礎,可以用來模擬兩端連接儲水槽之奈米尺度有限長帶電毛細管。經由這個數值模型,可以直接解釋流體流動、離子輸送、電位分布及電流流動而不用以一維分析方式來加以說明。從這些結果中,可以利用電流-電壓(I-V曲線)、電流-流量(I-Q)曲線算出電動效率來。 於數值模擬中使用濃度從10-5到10-2M 的KCl溶液作為工作流體,毛細管孔道半徑為10nm〜100nm,壁面電荷密度為 〜 C/m2的條件下,可得知電動效率與外加壓力下的流體流動、離子分布產生的流動電位及壁面帶電密度和毛細管孔道半徑有關。對於一固定孔徑半徑而言,電動效率會隨著壁面電荷密度增加而增加。而在固定壁面電荷密度與孔道半徑條件下,電動效率約在10-4M時,會有最大值的產生。一般而言在高濃度下,效率會隨著濃度減少而增加,但當濃度低過於某一濃度時,效率反而會有下降的趨勢。在固定壁面電荷密度及濃度條件下,將會有一個最佳的孔道半徑可以獲得最大電動效率。最大流動電位可視為一個電動效率的指標,普遍認為與壁面電荷密度、孔道半徑及工作流體的濃度有關。zh_TW
dc.description.abstractIn this study, electrokinetic energy conversion involving the electric power generation is investigated using membrane as the material. Based on the structural characteristic of membrane, a physical model containing a nanoscale finite-length charged cylindrical capillary tube and reservoirs connected at its ends is established. A numerical model solving the fluid flow, ion transport, electrical potential distribution and electric current flow is established without the assumptions made in the one-dimensional analysis reported in the literature. Using these results, the electric current-potential (I-V), electric current-flow rate (I-Q) curves and the electric power generation efficiency can be found. The Potassium chloride (KCl) with bulk concentration in the range of 10-5 to 10-2M is used as the working fluid. The capillary tube radius and surface charge density are chosen in the ranges of 10 to 100nm and to C/m2, respectively. It is found that the electric power generation efficiency is inter-related by the fluid flow and ion distribution which depend on the externally applied pressure difference, resulted streaming potential, surface charge density and capillary tube size. For a given capillary tube radius and KCl bulk concentration, electric power generation efficiency is found to increases with the increase of surface charge density. For fixed surface charge density and capillary tube radius case, efficiency varies with the KCl bulk concentration with a maximum efficiency occurs when bulk concentration is10-4M. At high bulk concentrations, efficiency increases with the decrease in bulk concentration while efficiency is found to decrease with the decrease in bulk concentration in when bulk concentration is low. Under the conditions of fixed surface charge density and KCl bulk concentration, an optimum capillary radius that producing maximum conversion efficiency can be found. The maximum streaming potential, an indication of the electric power generation performance, is found to depend on the surface charge density, capillary size and bulk concentration of working fluid.en_US
dc.description.tableofcontents誌謝 I 摘要 II Abstract IV 目錄 V 圖目錄 VI 符號說明 X 第一章 序 1 1-1前言 1 1-2電雙層理論 2 1-3 電動電池(Electrokinetic cell) 3 1-4文獻回顧 4 1-5 研究動機 10 第二章 物理模型及理論基礎 12 2-1 物理模型 12 2-2數學模式 13 2-3一維電動電池效率分析 15 2-4邊界設定與計算空間 17 第三章 實驗方法 19 3-1 實驗系統與方法 19 3-2 實驗步驟 19 第四章 第五章結果與討論 21 4-1 數值模式驗證 21 4-2 基本模型(base case)之結果 22 4-3 壁面電荷密度對發電效率之影響 24 4-4 KCl濃度對發電效率之影響 25 4-5 圓管大小對發電效率之影響 25 4-6 最大流動電位、電流、流量以及效率 26 4-7 實驗結果 27 第五章 總結與未來展望 28 參考文獻 30 圖表 32zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008200815184000en_US
dc.subjectElectrokinetic energy conversionen_US
dc.subject電動能量轉換zh_TW
dc.subjectstreaming potentialen_US
dc.subject流動電位zh_TW
dc.title帶電薄膜與電動效應應用於能量轉換之研究zh_TW
dc.titleStudy of Electrokinetic Energy Conversion Using Charged Membranesen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.