Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2067
標題: 熱彈塑性之有限元素分析
Finite element analysis of thermal elasto-plastic problems
作者: 張智堯
chang, chih-yao
關鍵字: finite element method;有限元素法;thermal elasto-plastic analysis;heat transfer analysis;熱彈塑性分析;熱傳分析
出版社: 機械工程學系所
引用: [1] Owen, D.R.J., Hinton, E., “Finite Element in Plasticity : Theory and Practice,” Pinerige Press Limited Swansea, U. K., 1980 [2] Polivka, R.M., Wilson, E.L., “Finite Element Analysis of Nonlinear Heat Transfer Problems,” Department of Civil Engineering University of California, Berkeley, Report no. UCSESM 76-2, 1976 [3] Bathe, K.J., Khoshgoftaar, M.R., “Finite Element Formulation and Solution of Nonlinear Heat Transfer,” Nuclear Engineering and Design, Vol.51, 1979: pp.398-401. [4] Weiner, J.H., Huddleston, J.V., “Transient and Residual Thermal Stresses in an Elastic-Plastic Cylinder,” J. of Applied Mechanics, 1960: pp.6. [5] Sharifi, P., Yates, D.N., “Nonliear Thermo-Elastic-Plastic and Creep Analysis by the Finite Element Method,” A.I.A.A. Journal, Vol.12, 1974: pp.1210-1215. [6] Chang, T.Y., Chu, S.C., “Elastic-Plastic Deformation of Cylinderical Pressure Vessels under Cyclic Loading,” Nuclear Engineering and Design, Vol.27, 1974: pp.228-278. [7] Snyder, M.D., Bathe, K.J., “A Solution Procedure for Thermo-Elastic-Plastic and Creep Problems,” Nuclear Engineering and Design, Vol.64, 1981: pp.49-80. [8] Schroder, R., “Influences on Development of Thermal and Residual Stresses in Quenched Steel Cylinders of Different Dimensions,” Materials Science and Technology, Vol.1, 1985: pp.754-764. [9] Jeanmart, P., Bouvaist, J., “Finite Element Calculation and Measurement of Thermal Stresses in Quenched Plates of High-Strength 7075 Aluminium Alloy,” Materials Science and Technology, Vol.1, 1985: pp.765-769. [10] Zhong, J., Shichun, W., “FEM Simulation of The Temperature Field During the Laser Forming of Sheet Metal,” J. Materials Processing Technology, Vol.74, 1998: pp.89-95. [11] Kyrsanidi, A.K., Kermanidis, T.B. and Pantelakis, S.G., “Numerical and Experimental Investigation of the Laser Forming Process,” Jounal of Materials Processing Technology, Vol.87, 1999: pp.281-290. [12] Wilson, E.L., Bathe, K.J. and Peterson, F.E., “Finite element Analysis of Linear and Nonlinear Heat Transfer,” Nuclear Engineering and Design, Vol.29, 1974: pp.110-124. [13] Baisheng, W., Zhonghai, X. and Zhengguang, L., “A note on imposing displacement boundary conditions in finite element analysis,” Commun. Numer. Meth. Engng., Vol.24, 2008: pp.777-784. [14] Goldak, J., Chakravarti, A. and Bibby, M., “A new finite element model for welding heat sources,” Metallurgical Transactions B, Vol.15B, 1984: pp.299-305. [15] Hu, Z., et.al, “Computer simulation and experimental investigation of sheet metal bending using laser beam scanning,” International Journal of Machine Tools and Manufacture, Vol.41(4), 2001: pp.589-607. [16] Owen, D.R.J., Salonen, E.M., “Three-dimensinoal elasto-plastic finite element analysis,” Int. J. num. Meth. Engng., Vol.9, 1975: pp.209-218.
摘要: 
本文以有限元素法處理非耦合、小變形之三維熱彈塑性分析,亦即忽略塑性變形所造成的溫度效應,所以溫度場與應力場可以分別求解。首先求解熱傳問題,然後再將溫差而產生之熱負載代進彈塑性應力分析中,最後計算出應力與彈塑性變形。
在求解溫度場時,採用後向差分法(backward difference method)對時間積分,此方法把熱流動速度利用一次方的近似法來模擬。而在彈塑性分析中,處理應力時,使用修正型牛頓-拉福森法為基礎的增量解法,同時在應力增量-應變增量的關係式中,採用等向性硬化法則來描述降伏面的變形。在分析過程中,不考慮材料係數隨溫度而變化之影響。
最後,分析了工件在加工後,利用已知溫度的方法,模擬出溫度造成工件體積膨脹之熱彈塑性變形,以及雷射平板熱作(hot work)加工成型過程其熱彈塑性分析,並與可取得之相關文獻之數據相比較。

This thesis uses the finite element method to deal with uncoupled, small deformation thermal elasto-plastic analysis. In other word, the effect of temperature produced by plastic deformation will be neglected, so the thermal analysis and the structural analysis can solve separately. First, calculate the temperature distribution and thermal loads which produced by the change of the temperature field, and then take the thermal loads into elasto-plastic analysis. Lastly, the thermal elasto-plastic stress and deformation will be obtained.
In the heat transfer analysis, use first-order “time-integration” method to calculate the temperature distribution. In the elasto-plastic analysis, use the incremental modified Newton-Raphson method to calculate the stress distribution, in a metal workpiece which obeys the isotropic hardening rule. The material properties of the workpiece are assumed to be temperature independent.
Finally, discuss the workpiece thermal elasto-plastic deformation produced by heat after working. Furthermore, talk about the thermal elasto-plastic analysis of the laser forming process.
URI: http://hdl.handle.net/11455/2067
其他識別: U0005-2101200913120500
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.