Please use this identifier to cite or link to this item:
標題: 含磁滯估測器之三軸壓電致動平台穩定適應模糊控制設計
Stable Adaptive Fuzzy Control with Hysteresis Observer for a Three-Axis Piezoactuated Stage
作者: 廖秉德
liao, bing-der
關鍵字: Hysteresis;磁滯效應;Piezoactuated Stage;壓電致動平台
出版社: 機械工程學系所
引用: [1] P. Ge, and M. Jouaneh, “Tracking Control of a Piezoceramic Actuator,” IEEE Trans. on Control Systems Technology, Vol. 4, No. 1, pp. 209-216, May 1996. [2] S. Yu, G. Alici, B. Shirinzadeh, and J. Smith, “Sliding Mode Control of a Piezoelectric Actuator with Neural Network Compensating Rate-Dependent Hysteresis,” IEEE Int. Conf. on Robotics and Automation, pp. 3641-3645, Apr. 2005. [3] G. Song, J. Zhao, X. Zhou, and J. A. De Abreu-Garcia, “Tracking Control of a Piezoceramic Actuator with Hysteresis Compensation Using Inverse Preisach Model,” IEEE/ASME Trans. on Mechatronics, Vol. 10, No. 2, pp. 198-209, 2005. [4] B. M. Chen, T. H. Lee, C.-C. Hang, Y. Guo, and S. Weerasooriya, “An Almost Disturbance Decoupling Robust Controller Design for a Piezoceramic Bimorph Actuator with Hysteresis,” IEEE Trans. on Control Systems Technology, Vol. 7, No. 2, pp. 160-173, 1999. [5] 黃恆庭,“壓電致動器磁滯模型之觀測器”,逢甲大學自動控制工程學系,碩士論文,民國九十年。 [6] 張柏翌,“三軸奈米平台之穩定適應控制:以ALTERA DSP發展版 實現”,國立中興大學機械工程學系,碩士論文,民國九十四年。 [7]X. Sun, and T. Chang, “Control of Hysteresis in a Monolithic Nanoactuator,” in Proc. American Control Conference, Arlington, VA, Vol. 3, pp. 2261-2266, 2001. [8]T. S. Low, and W. Guo, “Modeling of a Three-layer Piezoelectric Bimorph Beam with Hysteresis,” J. of Microelectromechanical Systems, Vol. 4, No. 4, pp. 230-237, 1995. [9]C. Sperpico, and C. Visone, “Magnetic Hysteresis Modeling via Feed-Forward Neural Networks,” IEEE Trans. on Magnetics, Vol. 34, No. 3, pp. 623-628, May 1998. [10] L. Sun, C. Ru, W. Rong , L. Chen, and M. Kong, “Tracking Control of Piezoelectric Actuator Based on a New Mathematical Model,” J. of Micromechanics and Microengineering, Vol. 14, No. 11, pp. 1439-1444, Nov. 2004. [11] L. A. Zadeh, “Fuzzy Sets,” Information and Control, Vol. 8, pp. 338-353, 1965. [12] L.-X. Wang, A Course in Fuzzy Systems and Control, Prentice Hall, 1997.

In this thesis, based on the dynamic model of a three-axis piezoactuated stage with simplified Dahl hysteresis model, we propose a stable adaptive fuzzy controller with a hysteresis variables observer. In the control design, a fuzzy function approximator is used for compensating for the effects of parameter estimate inaccuracy, model uncertainty, and coupling among three axes(considered as external disturbance). The overall closed-loop system stability is guaranteed in the design using Lyapunov stability theory. Some computer simulations using MATLAB are conducted to study the tracking performance under different desired trajectories. The compensation performance of the fuzzy function approximator is illustrated using different coupling effects among three axes. Finally, robustness of the adaptive control system with respect to system parameter variation is also discussed.
其他識別: U0005-2108200811513900
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.