Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20701
標題: 1. 利用國產茶特徵蛋白質做為產地辨識之分子標誌 2. 氧化鐵-氧化石墨烯奈米團簇於降血糖藥物之檢測
1. Use feature proteins of Taiwan tea as biomarkers for the certification of origin 2. Analysis of hypoglycemic drugs with Fe3O4@graphene oxide nanoclusters
作者: 簡涵如
Chien, Han-Ju
關鍵字: 青心烏龍;oolong tea;蛋白質體;分子標誌;奈米團簇;氧化石墨烯;降血糖藥物;質譜儀;proteomics;biomarker;nanocluster;graphene oxide;hypoglycemic drug;mass spectrometry
出版社: 分子生物學研究所
引用: [論文題目一] Agrawal, G.K., Rakwal, R., Yonekura, M., Kubo, A., Saji, H. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics. 2002, 2, 947-959. Ali, G.M., Komatsu, S. Proteomic analysis of rice leaf sheath during drought stress. J Proteome Res. 2006. 5, 396-403. Ambasht, N.K., Agrawal, M. Influence of supplemental UV-B radiation on photosynthetic characteristics of rice plants. Photosynthetica, 1997, 34, 401-408. Amme, S., Matros, A., Schlesier, B., Mock, H.P. Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology. J Exp Bot. 2006, 57, 1537-1546. Baer, D.J., Novotny, J.A., Harris, G.K., Stote, K., Clevidence, B., Rumpler, W.V. Oolong tea does not improve glucose metabolism in non-diabetic adults. Eur J Clin Nutr. 2011, 65, 87-93. Balbuena, T. S., Salas, J. J., Martinez-Force, E., Garces, R., Thelen, J. J. Proteome analysis of cold acclimation in sunflower. J. Proteome Res. 2011, 10, 2330-2346. Barajas-Lopez Jde, D., Kremnev, D., Shaikhali, J., Pinas-Fernandez, A., Strand, A. PAPP5 is involved in the tetrapyrrole mediated plastid signalling during chloroplast development. PLoS One. 2013. 8, e60305. Benzie, I.F., Szeto, Y.T. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J Agric Food Chem. 1999, 47, 633-636. Benzie, I.F., Szeto, Y.T. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J Agric Food Chem. 1999. 47, 633-636. Bocian, A., Kosmala, A., Rapacz, M., Jurczyk, B., Marczak, Ł., Zwierzykowski, Z. Differences in leaf proteome response to cold acclimation between Lolium perenne plants with distinct levels of frost tolerance. J Plant Physiol. 2011, 168, 1271-1279. Brosche’, M., Strid, A. Molecular events following perception of ultraviolet-B radiation by plants. Physiol. Plant 2003, 117, 1-10. Brugiere, N., Dubois, F., Limami, A. M., Lelandais, M., Roux, Y., Sangwan, R. S., Hirel, B. Glutamine synthetase in the phloem plays a major role in controlling proline production. Plant Cell. 1999, 11, 1995-2012. Cai, H., Zhou, Y., Xiao, J., Li, X., Zhang, Q., Lian, X. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep. 2009. 28, 527-537. Cellar, N.A., Kuppannan, K., Langhorst, M.L., Ni, W., Xu, P., Young, S.A. Cross species applicability of abundant protein depletion columns for ribulose-1,5-bisphosphate carboxylase/oxygenase. J Chromatogr B Analyt Technol Biomed Life Sci. 2008, 861, 29-39. Chen, H., Qu, Z., Fu, L., Dong, P., Zhang, X. Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea. J Food Sci. 2009, 74, C469-C474. Chen, J., Qin, S., Xiao, J., Tanigawa, S., Uto, T., Hashimoto, F., Fujii, M., Hou, D.X. A genome-wide microarray highlights the antiinflammatory genes targeted by oolong tea theasinensin A in macrophages. Nutr Cancer. 2011, 63, 1064-1073. Chen, X., Zhang, W., Zhang, B., Zhou, J., Wang, Y., Yang, Q., Ke, Y., He, H. Phosphoproteins regulated by heat stress in rice leaves. Proteome Sci. 2011. 9, 37. Chen, Y., Duan, J., Yang, S., Yang, E., Jiang, Y. Effect of girdling on levels of catechins in fresh leaf in relation to quality of ''Huang Zhi Xiang'' Oolong'' tea. Plant Foods Hum Nutr. 2009, 64, 293-296. Chen, Y., Duan, J., Yang, S., Yang, E., Jiang, Y. Effect of girdling on levels of catechins in fresh leaf in relation to quality of ''Huang Zhi Xiang'' Oolong'' tea. Plant Foods Hum Nutr. 2009, 64, 293-296. Chitteti, B.R., Peng, Z. Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J Proteome Res. 2007. 6, 1718-1727. Chivasa, S., Tome, D.F., Hamilton, J.M., Slabas, A.R. Proteomic analysis of extracellular ATP-regulated proteins identifies ATP synthase beta-subunit as a novel plant cell death regulator. Mol Cell Proteomics. 2011. 10, M110.003905. Chou, C.C., Lin, L.L., Chung, K.T. Antimicrobial activity of tea as affected by the degree of fermentation and manufacturing season. Int J Food Microbiol. 1999, 48, 125-130. Craven, R.A., Jackson, D.H., Selby, P.J., Banks, R.E. Increased protein entry together with improved focussing using a combined IPGphor/Multiphor approach. Proteomics. 2002, 2, 1061-1063. Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D.J., Coutu, J., Shulaev, V., Schlauch, K., Mittler, R. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell. 2005. 17, 268-281. Denslow, S.A., Rueschhoff, E.E., Daub, M.E. Regulation of the Arabidopsis thaliana vitamin B6 biosynthesis genes by abiotic stress. Plant Physiol Biochem. 2007, 45, 152-161. Desimone, M., Henke, A., Wagner, E. Oxidative Stress Induces Partial Degradation of the Large Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase in Isolated Chloroplasts of Barley. Plant Physiol. 1996, 111, 789-796. Dong, J., Xu, X., Liang, Y., Head, R., Bennett, L. Inhibition of angiotensin converting enzyme (ACE) activity by polyphenols from tea (Camellia sinensis) and links to processing method. Food Funct. 2011, 2, 310-319. Du, H., Liang, Y., Pei, K., Ma, K. UV radiation-responsive proteins in rice leaves: a proteomic analysis. Plant Cell Physiol. 2011, 52, 306-316. Durand, T.C., Sergeant, K., Renaut, J., Planchon, S., Hoffmann, L., Carpin, S., Label, P., Morabito, D., Hausman, J.F. Poplar under drought: comparison of leaf and cambial proteomic responses. J Proteomics. 2011, 74, 1396-1410. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989, 246, 64-71. Frohnmeyer, H., Staiger, D. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol. 2003, 133, 1420-1428. Gallardo, K., Job, C., Groot, S.P., Puype, M., Demol, H., Vandekerckhove, J., Job, D. Proteomic analysis of arabidopsis seed germination and priming. Plant Physiol. 2001, 126, 835-848. Gao, W., Zheng, Y., Slusser, J. R., Heisler, G. M., Grant, R. H., Xu, J., He, D. Effects of supplementary ultraviolet-B irradiance on maize yield and qualities: a field experiment. Photochem. Photobiol. 2004, 80, 127-131. Ghelis, T., Bolbach, G., Clodic, G., Habricot, Y., Miginiac, E., Sotta, B., Jeannette, E. Protein tyrosine kinases and protein tyrosine phosphatases are involved in abscisic acid-dependent processes in Arabidopsis seeds and suspension cells. Plant Physiol. 2008. 148, 1668-1680. Giro, M., Ceccoli, R.D., Poli, H.O., Carrillo, N., Lodeyro, A.F. An in vivo system involving co-expression of cyanobacterial flavodoxin and ferredoxin-NADP(+) reductase confers increased tolerance to oxidative stress in plants. FEBS Open Bio. 2011. 11, 7-13. Gorjanović, S., Komes, D., Pastor, F.T., Belščak-Cvitanović, A., Pezo, L., Hečimović, I., Sužnjević, D. Antioxidant capacity of teas and herbal infusions: polarographic assessment. J Agric Food Chem. 2012, 60, 9573-9580. Gygi, S.P., Rochon, Y., Franza, B.R., Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. 1999, 19, 1720-1730. Hajduch, M., Hearne, L.B., Miernyk, J.A., Casteel, J.E., Joshi, T., Agrawal, G.K., Song, Z., Zhou, M., Xu, D., Thelen, J.J. Systems analysis of seed filling in Arabidopsis: using general linear modeling to assess concordance of transcript and protein expression. Plant Physiol. 2010, 152, 2078-2087. Hamilton, C.A., Good, A.G., Taylor, G.J. Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat. Plant Physiol. 2001. 125, 2068-2077. Han, L.K., Takaku, T., Li, J., Kimura, Y., Okuda, H. Anti-obesity action of oolong tea. Int J Obes Relat Metab Disord. 1999, 23, 98-105. Hashimoto, F., Ono, M., Masuoka, C., Ito, Y., Sakata, Y., Shimizu, K., Nonaka, G., Nishioka, I., Nohara, T. Evaluation of the anti-oxidative effect (in vitro) of tea polyphenols. Biosci Biotechnol Biochem. 2003, 67, 396-401. Hayashino, Y., Fukuhara, S., Okamura, T., Tanaka, T., Ueshima, H., HIPOP-OHP Research Group. High oolong tea consumption predicts future risk of diabetes among Japanese male workers: a prospective cohort study. Diabet Med. 2011, 28, 805-810. Heinrich, S., Valentin, K., Frickenhaus, S., John, U., Wiencke, C. Transcriptomic analysis of acclimation to temperature and light stress in Saccharina latissima (Phaeophyceae). PLoS One. 2012. 7, 44342. Hidema, J., Taguchi, T., Ono, T., Teranishi, M., Yamamoto, K., Kumagai, T. ncrease in CPD photolyase activity functions effectively to prevent growth inhibition caused by UVB radiation. Plant J. 2007, 50, 70-79. Hosoda, K., Wang, M.F., Liao, M.L., Chuang, C.K., Iha, M., Clevidence, B., Yamamoto, S. Antihyperglycemic effect of oolong tea in type 2 diabetes. Diabetes Care. 2003, 26, 1714-1718. Hou, D.X., Masuzaki, S., Tanigawa, S., Hashimoto, F., Chen, J., Sogo, T., Fujii, M. Oolong tea theasinensins attenuate cyclooxygenase-2 expression in lipopolysaccharide (LPS)-activated mouse macrophages: structure-activity relationship and molecular mechanisms. J Agric Food Chem. 2010, 58, 12735-12743. Ideker, T., Thorsson, V., Ranish, J.A., Christmas, R., Buhler, J., Eng, J.K., Bumgarner, R., Goodlett, D.R., Aebersold, R., Hood, L. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science. 2001, 292, 929-934. Imin, N., Kerim, T., Weinman, J. J., Rolfe, B. G. Characterisation of rice anther proteins expressed at the young microspore stage. Proteomics 2001, 1, 1149-1161. Inoue, K., Prayoonhan, N., Tsutsui, H., Sakamoto, T., Nishimura, M., Toyo''oka, T. Use of chiral derivatization for the determination of dichlorprop in tea samples by ultra performance LC with fluorescence detection. J Sep Sci. 2013, 36, 1356-1361. Ishida, H., Nishimori, Y., Sugisawa, M., Makino, A., Mae, T. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is fragmented into 37-kDa and 16-kDa polypeptides by active oxygen in the lysates of chloroplasts from primary leaves of wheat. Plant Cell Physiol. 1997, 38, 471-479. Ishida, H., Wakimoto, T., Kitao, Y., Tanaka, S., Miyase, T., Nukaya, H. Quantitation of chafurosides A and B in tea leaves and isolation of prechafurosides A and B from oolong tea leaves. J Agric Food Chem. 2009, 57, 6779-6786. Jobstl, E., Fairclough, J.P., Davies, A.P., Williamson, M.P. Creaming in black tea. J Agric Food Chem. 2005, 53, 7997-8002. K*: An Instance-based Learner Using an Entropic Distance Measure (1995) Karas, M., Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988, 60, 2299-2301. Ke, Y., Han, G., He, H., Li, J. Differential regulation of proteins and phosphoproteins in rice under drought stress. Biochem Biophys Res Commun. 2009, 379, 133-138. Khan, M., Takasaki, H., Komatsu, S. Comprehensive phosphoproteome analysis in rice and identification of phosphoproteins responsive to different hormones/stresses. J. Proteome Res. 2005, 4, 1592-1599. Kim, D. W., Rakwal, R., Agrawal, G. K., Jung, Y. H., Shibato, J., Jwa, N. S., Iwahashi, Y., Iwahashi, H., Kim, D. H., Shim, leS., Usui, K. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 2005, 26, 4521-4539. Kim, Y., Talcott, S.T. Tea creaming in nonfermented teas from Camellia sinensis and Ilex vomitoria. J Agric Food Chem. 2012, 60, 11793-11799. Kjellsen, T.D., Shiryaeva, L., Schroder, W.P., Strimbeck, G.R. Proteomics of extreme freezing tolerance in Siberian spruce (Picea obovata). J Proteomics. 2010, 73, 965-975. Kobayashi, S., Murakami, K., Sasaki, S., Uenishi, K., Yamasaki, M., Hayabuchi, H., Goda, T., Oka, J., Baba, K., Ohki, K., Watanabe, R., Sugiyamama, Y. Dietary total antioxidant capacity from different assays in relation to serum C-reactive protein among young Japanese women. Nutr J. 2012, 11, 91. Koller, A., Washburn, M.P., Lange, B.M., Andon, N.L., Deciu, C., Haynes, P.A., Hays, L., Schieltz, D., Ulaszek, R., Wei, J., Wolters, D., Yates, J.R. 3rd. Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci U S A. 2002, 99, 11969-11974. Komatsu, S., Konishi, H., Shen, S., Yang, G. Rice proteomics: a step toward functional analysis of the rice genome. Molecular & Cellular Proteomics. 2003. 2, 2-10. Komatsu, S., Zang, X., Tanaka, N. Comparison of two proteomics techniques used to identify proteins regulated by gibberellin in rice. J. Proteome Res. 2006, 5, 270-276. Kondrak, M., Marincs, F., Antal, F., Juhasz, Z., Banfalvi, Z. Effects of yeast trehalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions. BMC Plant Biol. 2012. 12, 74. Kumagai, T., Hidema, J., Kang, H. S., Sato, T. Effects of supplemental UV-B radiation on the growth and yield of two cultivars of Japanese lowland rice (Oryza sativa L.) under the field in a cool rice-growing region of Japan. Agric. Ecosyst. Environ. 2001, 83, 201-208. Kuo, P.C., Lai, Y.Y., Chen, Y.J., Yang, W.H., Tzen, J.T. Changes in volatile compounds upon aging and drying in oolong tea production. J Sci Food Agric. 2011, 91, 293-301. Kuroda, Y., Hara, Y. Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat Res. 1999, 436, 69-97. Kuroda, Y., Hara, Y. Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat Res. 1999, 436, 69-97. Kusano, M., Tabuchi, M., Fukushima, A., Funayama, K., Diaz, C., Kobayashi, M., Hayashi, N., Tsuchiya, Y.N., Takahashi, H., Kamata, A., Yamaya, T., Saito, K. Metabolomics data reveal a crucial role of cytosolic glutamine synthetase 1;1 in coordinating metabolic balance in rice. Plant J. 2011. 66, 456-466. Lan, P., Li, W., Wen, T.N., Shiau, J.Y., Wu, Y.C., Lin, W., Schmidt, W. iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis. Plant Physiol. 2011, 155, 821-834. Lee, A.H., Su, D., Pasalich, M., Binns, C.W. Tea consumption reduces ovarian cancer risk. Cancer Epidemiol. 2013, 37, 54-59. Lee, R.J., Lee, V.S., Tzen, J.T., Lee, M.R. Study of the release of gallic acid from (-)-epigallocatechin gallate in old oolong tea by mass spectrometry. Rapid Commun Mass Spectrom. 2010, 24, 851-858. Li, J., Chen, J., Zhang, Z., Pan, Y. Proteome analysis of tea pollen (Camellia sinensis) under different storage conditions. J Agric Food Chem. 2008, 56, 7535-7544. Liang, Y., Lu, J., Zhang, L. Comparative study of cream in infusions of black tea and green tea [Camellia sinensis (L.) O. Kuntze]. Int J Food Sci Tech. 2002, 37, 627-634. Ma, H., Song, L., Shu, Y., Wang, S., Niu, J., Wang, Z., Yu, T., Gu, W., Ma, H. Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes. J Proteomics. 2012, 75, 1529-1546. Maruta, T., Inoue, T., Noshi, M., Tamoi, M., Yabuta, Y., Yoshimura, K., Ishikawa, T., Shigeoka, S. Cytosolic ascorbate peroxidase 1 protects organelles against oxidative stress by wounding- and jasmonate-induced H(2)O(2) in Arabidopsis plants. Biochim Biophys Acta. 2012. 1820, 1901-1907. Nam, M.H., Huh, S.M., Kim, K.M., Park, W.J., Seo, J.B., Cho, K., Kim, D.Y., Kim, B.G., Yoon, I.S. Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice. Proteome Sci. 2012. 10, 25. O''Farrell, P.H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975, 250, 4007-4021. Pan, M.H., Liang, Y.C., Lin-Shiau, S.Y., Zhu, N.Q., Ho, C.T., Lin, J.K. Induction of apoptosis by the oolong tea polyphenol theasinensin A through cytochrome c release and activation of caspase-9 and caspase-3 in human U937 cells. J Agric Food Chem. 2000, 48, 6337-6346. Parker, R., Flowers, T. J., Moore, A. L., Harpham, N. V. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J. Exp. Bot. 2006, 57, 1109-1118. Parry, M. A., Keys, A. J., Madgwick, P. J., Carmo-Silva, A. E., Andralojc, P. J. Rubisco regulation: a role for inhibitors. J Exp Bot. 2008, 59, 1569-1580. Piterkova, J., Luhova, L., Mieslerova, B., Lebeda, A., Petřivalsky, M. Nitric oxide and reactive oxygen species regulate the accumulation of heat shock proteins in tomato leaves in response to heat shock and pathogen infection. Plant Sci. 2013. 207, 57-65. Pujade-Renaud, V., Clement, A., Perrot-Rechenmann, C., Prevot, J. C., Chrestin, H., Jacob, J. L., Guern, J. Ethylene-Induced Increase in Glutamine Synthetase Activity and mRNA Levels in Hevea brasiliensis Latex Cells. Plant Physiol. 1994,105, 127-132. Rakwal, R., Komatsu, S. Role of jasmonate in the rice (Oryza sativa L.) self-defense mechanism using proteome analysis. Electrophoresis. 2000, 21, 2492-2500. Renaut, J., Hausman, J.F., Bassett, C., Artlip, T., Cauchie, H.M., Witters, E., Wisniewski, M. Quantitative proteomic analysis of short photoperiod and low-temperature responses in bark tissues of peach (Prunus persica L. Batsch). Tree Genetics & Genomes. 2008, 4, 589–600. Rumpler, W., Seale, J., Clevidence, B., Judd, J., Wiley, E., Yamamoto, S., Komatsu, T., Sawaki, T., Ishikura, Y., Hosoda, K. Oolong tea increases metabolic rate and fat oxidation in men. J Nutr. 2001, 131, 2848-2852. Schmelz, E.A., Carroll, M.J., LeClere, S., Phipps, S.M., Meredith, J., Chourey, P.S., Alborn, H.T., Teal, P.E. Fragments of ATP synthase mediate plant perception of insect attack. Proc Natl Acad Sci U S A. 2006. 103, 8894-8899. Seo, S., Sano, H., Ohashi, Y. Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase. Plant Cell. 1999. 11, 289-298. Shin, K.H., Kamal, A.H.M., Cho, K., Choi, J.S. Yu, J., Nam-Chon, P., Lee, Y.W., Lee, J.K., Park, J.C. Kim, H.T., Woo, S.H. Defense proteins are induced in wheat spikes exposed to Fusarium graminearum. Plant Omics. 2011. 4, 270-277. Shiraishi, M., Haruna, M., Matsuzaki, M., Ota, E., Murayama, R., Murashima, S. Association between the serum folate levels and tea consumption during pregnancy. Biosci Trends. 2010, 4, 225-230. Sugihara, K., Hanagata, N., Dubinsky, Z., Baba, S., Karube, I. Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell Physiol. 2000. 41, 1279-1285. Tanaka, K., Hiroaki, W., Yutaka, I., Satoshi, A., Yoshikazu, Y., Tamio, T., Mastuo, T. Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry. 1988, 2, 151-153. Tanida, M., Tsuruoka, N., Shen, J., Kiso, Y., Nagai, K. Effects of oolong tea on renal sympathetic nerve activity and spontaneous hypertension in rats. Metabolism. 2008, 57, 526-534. Terry, M.J., Smith, A.G. A model for tetrapyrrole synthesis as the primary mechanism for plastid-to-nucleus signaling during chloroplast biogenesis. Front Plant Sci. 2013. 4, 14. Titiz, O., Tambasco-Studart, M., Warzych, E., Apel, K., Amrhein, N., Laloi, C., Fitzpatrick, T.B. PDX1 is essential for vitamin B6 biosynthesis, development and stress tolerance in Arabidopsis. Plant J. 2006, 48, 933-946. Verhaert, P., Uttenweiler-Joseph, S., de Vries, M., Loboda, A., Ens, W., Standing, K.G. Matrix-assisted laser desorption/ionization quadrupole time-of-flight mass spectrometry: an elegant tool for peptidomics. Proteomics. 2001, 1, 118-131. Wang, Y., Chung, F.F., Lee, S.M., Dykes, G.A. Inhibition of attachment of oral bacteria to immortalized human gingival fibroblasts (HGF-1) by tea extracts and tea components. BMC Res Notes. 2013, 6, 143. Wang, Y., Lee, S.M., Dykes, G.A. Potential mechanisms for the effects of tea extracts on the attachment, biofilm formation and cell size of Streptococcus mutans. Biofouling. 2013, 29, 307-318. Wang, Y., Li, Q., Wang, Q., Li, Y., Ling, J., Liu, L., Chen, X., Bi, K. Simultaneous determination of seven bioactive components in Oolong tea Camellia sinensis: quality control by chemical composition and HPLC fingerprints. J Agric Food Chem. 2012, 60, 256-260. Yang, E.J., Oh, Y.A., Lee, E.S., Park, A.R., Cho, S.K., Yoo, Y.J., Park, O.K. Oxygen-evolving enhancer protein 2 is phosphorylated by glycine-rich protein 3/wall-associated kinase 1 in Arabidopsis. Biochem Biophys Res Commun. 2003. 305, 862-868. Yang, T.T., Koo, M.W. Hypocholesterolemic effects of Chinese tea. Pharmacol Res. 1997, 35, 505-512. Yang, Z., Li, Z., Zhu, J., Wang, Q., He, P., Fang, Y. Use of different buffers for detection and separation in determination of physio-active components in oolong tea infusion by CZE with amperometric detection. J Sep Sci. 2010, 33, 1312-1318. Zaffagnini, M., Bedhomme, M., Groni, H., Marchand, C.H., Puppo, C., Gontero, B., Cassier-Chauvat, C., Decottignies, P., Lemaire, S.D. Glutathionylation in the photosynthetic model organism Chlamydomonas reinhardtii: a proteomic survey. Mol Cell Proteomics. 2012. 11, M111.014142. Zhang, G., Miura, Y., Yagasaki, K. Effects of green, oolong and black teas and related components on the proliferation and invasion of hepatoma cells in culture. Cytotechnology. 1999, 31, 37-44. Zhang, G., Miura, Y., Yagasaki, K. Effects of green, oolong and black teas and related components on the proliferation and invasion of hepatoma cells in culture. Cytotechnology. 1999, 31, 37-44. Zhang, Z., Komatsu, S. Molecular cloning and characterization of cDNAs encoding two isoforms of ribulose-1,5-bisphosphate carboxylase/oxygenase activase in rice (Oryza sativa L.). J Biochem. 2000. 128, 383-389. Zivy, M., de Vienne, D. Proteomics: a link between genomics, genetics and physiology. Plant Mol Biol. 2000, 44, 575-580. Zuo, Y., Chen, H., Deng, Y. Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta. 2002, 57, 307-316. [論文題目二] 鄭楠燕。2006。氧化鐵奈米粒子萃取蛋白質和胜肽應用於基質輔助雷射托附游離飛行時間質譜法的研究。朝陽科技大學應用化學系碩士論文。 Ayorinde, F.O., Garvin, K., Saeed, K. Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2000. 14, 608-615. Brownson, D.A., Banks, C.E. Graphene electrochemistry: an overview of potential applications. Analyst. 2010. 135, 2768-2778. Chen, D., Tang, L., Li, J. Graphene-based materials in electrochemistry. Chem Soc Rev. 2010. 39, 3157-3180. Chen, S.J., Chang, H.T. Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation. Anal Chem. 2004. 76, 3727-3734. Chen, W.Y., Chen, Y.C. Affinity-based mass spectrometry using magnetic iron oxide particles as the matrix and concentrating probes for SALDI MS analysis of peptides and proteins. Anal Bioanal Chem. 2006. 386, 699-704. Cotter, R.J. Plasma desorption mass spectrometry: coming of age. Anal. Chem. 1988. 60, 781-793. Geim, A.K., Novoselov, K.S. The rise of graphene. Nat Mater. 2007. 6, 183-191. Green, A.A., Hersam, M.C. Emerging Methods for Producing Monodisperse Graphene Dispersions. J Phys Chem Lett. 2010. 1, 544-549. Guo, Z., Zhang, Q., Zou, H., Guo, B., Ni, J. A method for the analysis of low-mass molecules by MALDI-TOF mass spectrometry. Anal Chem. 2002. 74, 1637-1641. Harvey, D.J. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev. 1999. 18, 349-450. Ho, E.N., Yiu, K.C., Wan, T.S., Stewart, B.D., Watkins, K.L. Detection of anti-diabetics in equine plasma and urine by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2004. 811, 65-73. Huang, Y.F., Chang, H.T. Nile Red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2006. 78, 1485-1493. Jia, X., Campos-Delgado, J., Terrones, M., Meunier, V., Dresselhaus, M.S. Graphene edges: a review of their fabrication and characterization. Nanoscale. 2011. 3, 86-95. Karas, M., Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 1988. 60, 2299-2301. Kim, J., Kang, W. Use of graphite plate for homogeneous sample preparation in matrix/surface-assisted laser desorption and ionization of polypropyleneglycol and polystyrene. Bull. Korean Chem. Soc. 2000. 21, 401-404. Kinumi, T., Saisu, T., Takayama, M., Niwa, H. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an inorganic particle matrix for small molecule analysis. J Mass Spectrom. 2000. 35, 417-422. Kundlik, M.L., Zaware, B.H., Kuchekar, S.R. Rapid and specific approach for direct measurement of glimepiride in human plasma by LC-ESI-MS-MS employing automated 96 well format: application to a bioequivalence study. J Chromatogr Sci. 2012. 50, 64-70. Lai, S.M., Hsiao, J.K., Yu, H.P., Lu, C.W., Huang, C.C., Shieh, M.J., Lai, P.S. Polyethylene glycol-based biocompatible and highly stable superparamagnetic iron oxide nanoclusters for magnetic resonance imaging. J. Mater. Chem. 2012. 22, 15160-15167. Lay, JO. Jr. MALDI-TOF mass spectrometry of bacteria. Mass Spectrom Rev. 2001. 20, 172-194. Lee, C., Wei, X., Kysar, J.W., Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008. 321, 385-388. Lee, J., Kim, Y.K., Min, D.H. Laser desorption/ionization mass spectrometric assay for phospholipase activity based on graphene oxide/carbon nanotube double-layer films. J Am Chem Soc. 2010. 132, 14714-14717. Liu, C.W., Chien, M.W., Su, C.Y., Chen, H.Y., Li, L.J., Lai, C.C. Analysis of flavonoids by graphene-based surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst. 2012. 137, 5809-5816. Liu, Y., Liu, J., Deng, C., Zhang, X. Graphene and graphene oxide: two ideal choices for the enrichment and ionization of long-chain fatty acids free from matrix-assisted laser desorption/ionization matrix interference. Rapid Commun Mass Spectrom. 2011. 25, 3223-3234. Liu, Y., Liu, J., Yin, P., Gao, M., Deng, C., Zhang, X. High throughput identification of components from traditional Chinese medicine herbs by utilizing graphene or graphene oxide as MALDI-TOF-MS matrix. J Mass Spectrom. 2011. 46, 804-815. Lu, M., Lai, Y., Chen, G., Cai, Z. Matrix interference-free method for the analysis of small molecules by using negative ion laser desorption/ionization on graphene flakes. Anal Chem. 2011. 83, 3161-3169. McCreery, R.L. Advanced carbon electrode materials for molecular electrochemistry. Chem Rev. 2008. 108, 2646-2687. Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., Schedin, F., Elias, D.C., Jaszczak, J.A., Geim, A.K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett. 2008. 100, 016602. Munson, M.S.B., Field, F.H. Chemical ionization mass spectrometry. J. Am. Chem. Soc. 1960. 88, 2621-2630. Nair, A.O. Electron impact mass spectrometry. Rev. Sci. Instrum. 1947. 18, 398-411. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M., Geim, A.K. Fine structure constant defines visual transparency of graphene. Science. 2008. 320, 1308. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005. 438, 197-200. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. Electric field effect in atomically thin carbon films. Science. 2004. 306, 666-669. Pumera, M. Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec. 2009. 9, 211-223. Ren, S.F., Guo, Y.L. Oxidized carbon nanotubes as matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of biomolecules. Rapid Commun Mass Spectrom. 2005. 19, 255-260. Shi, C., Meng, J., Deng, C. Enrichment and detection of small molecules using magnetic graphene as an adsorbent and a novel matrix of MALDI-TOF-MS. Chem Commun (Camb). 2012. 48, 2418-2420. Sleno, L., Volmer, D.A. Some fundamental and technical aspects of the quantitative analysis of pharmaceutical drugs by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2005. 19, 1928-1936. Tang, L.A., Wang, J., Loh, K.P. Graphene-based SELDI probe with ultrahigh extraction and sensitivity for DNA oligomer. J Am Chem Soc. 2010. 132, 10976-10977. Thomson, J.J. Rays of positive electricity and their application to chemical analysis. Proc Roy Soc. 1913. 89, 1-20. Xu, S., Li, Y., Zou, H., Qiu, J., Guo, Z., Guo, B. Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. Anal Chem. 2003. 75, 6191-6195. Yang, W., Ratinac, K.R., Ringer, S.P., Thordarson, P., Gooding, J.J., Braet, F. Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed Engl. 2010. 49, 2114-2138. Zhang, H., Cha, S., Yeung, E.S. Colloidal graphite-assisted laser desorption/ionization MS and MS(n) of small molecules. 2. Direct profiling and MS imaging of small metabolites from fruits. Anal Chem. 2007. 79, 6575-6584. Zhang, Y., Tan, Y.W., Stormer, H.L., Kim, P. Experimental observation of the quantum Hall effect and Berry''s phase in graphene. Nature. 2005. 438, 201-204. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010. 22, 3906-3924.
摘要: 
[論文題目一]
青心烏龍茶葉為台灣主要茶葉之一,每日適量攝取可預防心血管疾病或是肥胖等等。近數十年來,由於其他產茶國以較低廉生產成本之劣質茶仿台茶或是以進口茶混充國產茶進行高價售出,使得台灣茶產業受到強烈的衝擊;在台灣,雖有經濟部智慧財產局的產地證明標章來保障茶葉的品質,但由於評斷偏於主觀,例如依據其外觀、水色、香氣、滋味等等來判別,因此需要客觀的科學根據來評論。目前有許多文獻利用蛋白質體學找尋表現量差異的蛋白質,了解環境對生物體的影響、藥物的機制、生物標記的發現等等。為了確保各產茶區之獨特完整性,消費者可買到百分百產地茶,避免不明來源之茶葉魚目混珠,因此本篇目的為利用蛋白質體學技術,二維膠體電泳搭配 nano-LC-MS/MS 進行研究,探討不同產茶地區的國產青心烏龍茶葉與國外產的青心烏龍茶葉之蛋白質表現差異,找尋產地特異辨識之分子標誌。本研究以國內外 22 組不同產地的春季青心烏龍茶葉進行蛋白質體實驗,獲得的蛋白質表現強度可以藉由軟體的轉換得到的數值,藉由統計軟體演算出具有代表性的特徵蛋白質點來區分不同產地,搭配生物資訊的方法將 22 個產地所獲得的大量蛋白質強度數據整合成一個資料庫,建立了區分青心烏龍茶葉的產地之平台。此平台可應用於檢測茶葉產地並產生輔助茶農建立自產茶葉的生產履歷,確保台灣茶葉的地位;另一方面,對於消費者而言,飲用安全性獲得提升,也減少茶葉買賣糾紛。

[論文題目二]
降血糖藥物能夠使得血液中的血糖降低,達到治療、控制糖尿病病人的效果,但有部分人士為達私人目的,利用藥物使得身體處於低血糖的狀態。目前已有文獻利用 LC-MS/MS 進行降血糖藥物快速檢測,但尚未有任何研究利用 MALDI-TOF MS 進行偵測。MALDI-TOF MS 在小分子 (m/z < 500) 分析時,因有機基質的訊號,進而干擾及抑制分析物,造成分析困難,因此為了解決有機基質干擾的問題,無機基質之 SALDI-TOF MS 便為一重要的研究方向。氧化石墨烯 (graphene oxide, GO) 為無機材料之一,有研究利用 GO 對長鏈脂肪酸進行純化並利用 MALDI-TOF MS 進行檢測。氧化鐵奈米粒子 (iron oxide nanoparticles, IONP) 具有超順磁性,不會互相有磁性而導致聚集;高表面積,容易具官能基修飾;低沉澱速率,穩定性高;低毒性、生物相容性好,人體不會排斥;目前已應用於生物醫學、臨床的治療與檢測,曾有文獻利用有修飾官能基之 IONP 對小分子進行濃縮並利用 MALDI-TOF MS 進行分析。因此,本篇目的為利用 IO@SLGO、IO@FLGO2-4、IO@FLGO4-8 之不同氧化鐵-石墨烯奈米團簇對人體尿液中之降血糖藥物進行吸附濃縮以及 SALDI-TOF MS 之檢測,並比較此三種奈米團簇之吸附濃縮效果。

[論文題目一]
Oolong tea is one of the major teas in Taiwan, drinking of tea appropriately can prevent cardiovascular disease, obesity and cancer, etc. Recently, the cheap-cost and the poor-quality of the foreign teas have made to imitate Taiwan oolong tea or blend the low-quality foreign teas with Taiwan oolong teas, and sell it at high price; it results in a strong impact on Taiwan oolong teas’ industry. There are origin certification marks to insure the quality of teas grant from intellectual property office in Taiwan, but the judgment is subjective, for instance, the morphology, color, smell, taste, etc. So, it’s need objective scientific basis to judge the teas. So far, several studies used proteomics method to find out the significant expression of proteins, to understand the effects of environments on creatures, the mechanisms of drugs and biomarker discovery, and so on. To assure the integrity of each producing area of oolong tea, 100% original tea can be bought by consumers, and avoid the blending low-quality foreign teas with Taiwan oolong teas, herein, 2-DE and nano-LC-MS/MS was applied to the comparative proteomics analysis of the teas with different production place, to find out the specific proteins as biomarkers for the certification of origins. In this study, we used the spring oolong teas came from 22 different product places to do the proteomics experiments, the protein expression intensity could be measured by software, and used the statistical analysis system to choose the feature protein spots to distinguish the different product places, and then, a database was built by bioinformatics, to establish the platform to

distinguish the oolong teas product places. This platform could be used in forecasting the produce places and gave each tea farmer a product resume; on the other hand, it is safer to consumers, and also decreases the dispute of commerce.

[論文題目二]
Hypoglycemic drugs can reduce the level of blood sugar; they are used to treat or control the level of blood sugar in diabetes patients, but there is some people uses the drugs to lower the normal blood suger to feel sick to achieve personal purposes. So far, there are many studies using LC-MS/MS to develop rapid methods to analyze Glimepiride, but there has no study showed the analysis of Glimepiride by using MALDI-TOF MS. When analyzing small molecular (m/z < 500) with MALDI-TOF MS, there are many matrix peaks in the area, it will interfere or suppress the signals of small molecules, results in the difficulties of analysis, to overcome the disadvantage, SALDI-TOF MS has been developed, it can resolve the problem. Graphene oxide (GO) is one of the inorganic materials, there was a study reported that they used GO to enrich the long-chain fatty acid, and analyzed with MALDI-TOF MS. Iron oxide nanoparticles (IONP), its superparamagnetism leads no self-aggregate, and it has high surface area to modify with functional groups, and its low rate of precipitation indicates that it’s stable, and there’s no rejection on human body because of its low toxic, good biocompatibility, and it can be apply to biomedicine, the therapy and detection of clinical. There is a study showed that they used the modified IONP to enrich small molecule and analysis with MALDI-TOF MS. Here in, our purpose is that using IO@SLGO, IO@FLGO2-4, IO@FLGO4-8, the different type of nanoclusters, to enrich the hypoglycemic drugs in human urine and analysis it with SALDI-TOF MS, and make comparisons between them.
URI: http://hdl.handle.net/11455/20701
其他識別: U0005-0508201314012500
Appears in Collections:分子生物學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.