Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2071
標題: 鋯鈦酸鉛薄膜之性質量測及其在發電裝置應用之研究
Characterization of Thin-Film PZT and The Application of Micro Power Generator Using PZT Film
作者: 宋孟桓
Sung, Meng-Huan
關鍵字: 鋯鈦酸鉛薄膜;Zirconate Titanate Oxide (PZT) thin film;微發電機;溶膠凝膠技術;模態量測;壓電常數量測;發電功率;發電裝置內阻值;micro power generator;sol-gel technique;mode shape measurement;piezoelectric coefficient measurement;power output;the intrinsic resistance of thin-film generator
出版社: 機械工程學系所
引用: [1]P.B. Koeneman, I. J. Busch-Vishniac, and K. L. Wood,“Feasibility of micro power supplies for MEMS,” Journal of Microelectromechanical Systems, Vol. 6, pp. 355-362(1997). [2]C.B.Williams and R.B.Yates, “Analysis of a micro-electric generator for Microsystems,” Sensors and Actuators A, Vol 52 ,pp.8-11(1996). [3]W. J. Li, Z. Wen, P. K. Wong, G. M. H. Chan, P. H.W. Leong, “A microchined vibration-induced power generator for low power sensors of robotic systems,” The 8th International Symposium on Robotics with Application, June 16-21 (2000). [4]W. J. Li, T. C. H. Ho, G. M. H. Chan, P. H.W. Leong, and H. Y.Wong, “Infrared signal transmission by a laser-micromachined vibration-induced power generator,”Proc. 43rd IEEE Midwest Symposium on Circuits and Systems, pp.236-239 (2000). [5]曾國育,”振動式微型發電器的設計與製作”,國立清華大學電子工程研究所碩士論文 (2001). [6]P. Glynne-Jones, S. P. Beeby, and N.M. White, “ Toward piezoelectric vibration-powered microgenerator,” IEE Proc.-Sci.Meas. Technol, Vol. 148, pp. 68-72 (2001). [7]J. Y. Kang, H. J. Kim, J. S. Kim, T. S. Kim, “Optimal design of piezoelectric cantilever for a micro power generator with microbubble,”The 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, pp.424-427 (2002). [8]A. Kasyap, “A theoretical and experimental study of piezoelectric composite cantilever beams for energy reclamation,” M.S. Thesis, AeMES Department, University of Florida, Gainesville, FL, (2002). [9]周卓明,“壓電力學”,全華科技圖書(2003). [10]J.Soderkvist,“Dynamic behavior of a piezoelectric beam,” J.Acoust. Soc.Am.,Vol.90,pp.686-692,(1991). [11]M.S.Weinberg,”Working equations for piezoelectric actuators and sensors,”IEEE Journal of Microelectromechanical System,Vol.8,pp.529-523,(1999). [12]F.Lu , HP.Lee and S.P.Lim,“Modeling and Analysis of Micro Piezoelectric Power Generators for Micro-Electromechanical-Systems Applications ,”Smart Matrials and Structures 13,pp.57–63,(2004). [13]S.N. Chen,G.J. Wang,W.C. Yu,“Analytic Modeling and Experimental Verification of Thin-film Piezoelectric Vibration-Induced Micro Power Generator,”The 2004 ASME International Mechanical Engineering Congress, (2004). [14]G.J.Wang,Y.H.Lin,H.H.Yang,C.Y.Pan,“Design And Fabrication Of A High Efficiency Piezoelectric Vibration-Inducded Micro Power Generator.”The 2003 ASME International Mechanical Engineering Congress,(2003). [15]林盈旭,”壓電式振動微發電機之設計與製作,”碩士論文,國立中興大學機械工程研究所,(2003). [16]彭泰龍,” 壓電式發電裝置研究,”碩士論文,國立中興大學機械工程研究所,(2007). [17]H. A. SODANO,D. J. INMAN AND G. ARK, “Generation and storage of electricity from power harvesting devices,” Journal of Intelligent Material Systems and Structures, Vol.16, pp.67-75,January, (2005), [18]J.Q.Liu ; Z.Y.Xu; L.Dong; L.Wang; D.Cheni; B.C.Cai; Y.Liu,“Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting,”Microelectronics Journal, Vol.37, pp. 1280-1284,November, (2006). [19]Y.B. Jeon , R. Sood, J.-h. Jeong , S.-G. Kim, “MEMS power generator with transverse mode thin film PZT,” Sensors and Actuators, A: Physical, v 122, n 1 SPEC. ISS., pp.16-22,Jul 29, (2005). [20]陳興,”振動量測”,機械月刊,第二十一卷第十一期,pp184-202,(1995). [21]范逸之,”振動阻尼量測分析方法簡介”機械工業雜誌,pp120-127,(1995). [22]A.D.Nashif、D.I.G. Jones and J.P. Henderson,”Vibration Damping,”A Wiley-Interscience Publication,pp.117-154,(1985) [23]E.P. James, M.J. Tudor, S.P. Beeby, N.R. Harris, P. Glynne-Jones, J.N Ross, N.M. White,“An investigation of self-powered systems for condition monitoring applications,”Sensors and Actuators A 110,pp.171-176,(2004). [24]G.C,et al.“ PZT-based Suspensions for Tape Casting,” Journal of the European Ceramic Society, Vol.7, p 367-371, (1997). [25]F. H, et al. “ Deposition condition of epitaxially grown PZT films by CVD,”Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi,Journal of the Ceramic Society of Japan, Vol.102, pp795-798,( 1994). [26]L.Weng, et al.“Effect of acetylacetone on the preparation of PZT materials in sol–gel processing,”Materials Science and Engineering B,Vol.96,Issue 3,pp.307-312, (2002). [27]J. D. Mackenzie, et al.“Ferroelectric Materials by the Sol-gel Method”J.Sol-gel Sci&Tech, Vol.8, pp.673-679, (1997). [28]V. T. J, et al.“Effect of solution processing on PZT thin films prepared by a hybrid MOD solution deposition route,”Journal of Electroceramics,pp. 261-268, (1999). [29]S.T, et al.,“ Electrophoretic deposition of PZT ceramic films,” IEEE International Symposium on Applications of Ferroelectrics, Vol. 1, pp.193-196, (1996). [30]陳銀郎,“鋯鈦酸鉛鐵電薄膜之有機金屬化學氣相沉積合成,”國立台灣科技大學碩士論文,(2000) [31]C.W.Tai,K.Z.Baba-kishi,K.H.Wong, “Microtexture characterization of PZT ceramics and thin films by electron microscopy,”Micron 33,pp.581-586,(2002). [32]周嘉峰,“雷射退火低溫製備鈦鋯酸鉛薄膜之研究,”國立台灣科技大學碩士論文,(2001)。 [33]量測發展中心,“電陶瓷線性馬達應用研討會,”財團法人工業技術研究院,(1999)。 [34]陳志清,“壓電薄膜表面聲波元件之製作,”國立台灣大學機械工程研究所碩士論文,(1997)。 [35]施敏升,“壓電致動器與感測器之分析與研究,”私立中原大學機械工程學系,碩士論文,(2002)。 [36]K. Lefki and G. J. M. Dormans, “Measurement of piezoelectric coefficients of ferroelectric thin films,” Journal of Applied Physics, pp.1764–1767,(1994). [37]M. Sakata et al, “Sputtered high |d31| coefficient PZT thin film for micro actuators,” Proceedings of the 9th IEEE MEMS Workshops ,pp.263-266,(1996) [38]J. F. Shepard et al,“Wafer flexure technique for the determination of the transverse piezoelectric coefficient (d31) of PZT thin films,”Sensor and Actuator A, pp.133-138,(1998). [39]D. Fu, et al,“Observation of piezoelectric relaxation in ferroelectric thin films by continuous charge integration,”Japanese Journal of Applied Physics, pp.5683-5686, (2001). [40]A. Khalkis, Ch. Wutchrich, D. V. Taylor, and Setter N,“Interferometric measurements of electric field-induced displacements in piezoelectric thin films,”Review of Scientific Instruments ,pp. 1935–1941 (1996). [41]J. A. Christman et al, “Piezoelectric measurements with atomic force microscopy,” Applied Physics Letters, pp.3851-3853, (1998).
摘要: 
發展從周遭環境獲得能量的微型發電機近年來受到各國研究單位的重視。在各種微發電裝置中,壓電式發電裝置為最具潛力的一種。壓電發電裝置是利用壓電材料的特性將裝置的變形轉換成電能。欲發展高效率壓電發電裝置就必須加大發電裝置的變形量或是提高壓電材料的壓電效應,因此發展質量輕、變形量大、壓電效率佳的鋯鈦酸鉛(PZT)薄膜為其中一重要關鍵技術。
本論文分為兩個部份,第一部分為利用溶膠-凝膠技術(sol-gel technique)並以白金基板退火與未退火二種不同製程沉積高壓電特性的PZT薄膜,經由極化測試後將選定白金基板未退火製程來製作PZT薄膜。成功的沉積於基板後再利用XRD、電滯曲線分析、電容阻抗量測以及壓電常數量測作定量分析。由XRD實驗結果得知第一層燒結後的薄膜其相位峰值均相同,因此成分為鈣鈦礦結構,即為最佳之PZT組成而越多層結晶性越強。在PZT薄膜厚度為1.5μm時,由電滯曲線分析得知承受最大電場為450(kV/cm),其中:殘留極化量Pr為 、自發極化量Ps為 、矯頑電場Ec為100(kV/cm)。電容阻抗分析中證明PZT薄膜趨近電容的特性,測得電容值為29.4nF且漏電流值僅0.025。壓電常數量測中,測得e31=0.267C/m2 。
第二部份為利用PZT薄膜發展微型發電裝置。首先建立發電元件電轉換模式,並利用有限元素法分析微發電機的模態。本論文將發電元件製作成懸臂樑型式,利用激振器激發懸臂樑的第一共振模態產生最大振幅。接著利用實驗量測發電元件的模態並與有限元素分析結果做比對。最後探討發電元件在共振下應變與發電量之關並量測發電功率。在結構模態與自然頻率中,將實驗結果與有限元素分析比較,結果相當接近。與彭泰龍[16]實驗中相比,在相同條件下壓電薄膜發電量優於塊材PZT,且使用壓電薄膜形式發電裝置可降低其內阻值。

Micro power generators which harvest energy from ubiquitous environmental excitation have gained immense attention in the last decade. Among several micro harvesting devices, one of the most potential is piezoelectric power generator. Piezoelectric harvesting devices convert ambient vibration energy to electrical power via piezoelectric effect. To achieve high efficiency of power generator, either larger vibration of piezoelectric device or higher piezoelectric effect of piezoelectric material is desired. One of the most importance techniques is to develop Lead Zirconate Titanate Oxide (PZT) thin film. In this thesis, sol-gel process is used to fabricate high performance PZT thin film on silicon wafer. PZT film is fabricated on annealed and non-annealed Pt/Ti/SiNx/SiO2/Si substrate. Thin film on non-annealed Pt/Ti/SiNx/SiO2/Si substrate is preferred because it could be poled at higher electric field in polarization test. The resulting thickness reaches 1.5μm in three coatings for annealed with crack-free areas as large as 4mm×4mm. In the P-E hysteresis measurement, the testing electrode is 3mm×3mm. Saturation poling field is 450kV/cm and coercive field is 100kV/cm. Remnant and Saturation polarization is 12.2μC/cm2 and 33.2μC/cm2. In the LCR measurement, the capacitance of PZT film is 29.4nF and dielectric loss is just 0.025. Dielectric constant, 553, can be determined by the capacitance, thickness and surface area of film. In the piezoelectric coefficient measurement, e31 is 0.267C/m2.
Fabricated PZT thin films then are implemented into micro power generator application. In the thesis, the energy conversion model and mode shape of power generator are also determined by analytic and finite element analysis. The power generator is designed in the form of cantilever beam and excited at first resonance mode to generator maximum vibration amplitude. The applied strain and induced charges are compared. Finally, the power output has been determined. Experimental results show that mode shapes of power generator by experiment are similar as ANSYS model. Compared to the result in TAI-LUNG PENG thesis [16], thin film power generator could harvest more energy than bulky one under the same condition. The intrinsic resistance of thin-film generator also could be reduced at four times.
URI: http://hdl.handle.net/11455/2071
其他識別: U0005-2108200813560900
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.