Please use this identifier to cite or link to this item:
標題: Xanthomonas campestris pv. campestris β-lactamase的運送與表現
Translocation and expression of β-lactamase in Xanthomonas campestris pv. campestris
作者: 鄧福勝
Deng, Fu-Sheng
關鍵字: 十字花科黑腐菌;Xanthomonas campestris pv. campestris
出版社: 分子生物學研究所
引用: 參 考 文 獻 1. 陳駿義 (1998). Xanthomonas campestris pv. campestris β-lactamase 基因之選殖與定序. 國立中興大學分子生物研究所碩士論文. 2. 陳志宏 (1999). 十字花科蔬菜黑腐病菌 β-lactamase基因之選殖與定序. 國立中興大學分子生物研究所碩士論文. 3. 陳義元 (2001). 十字花科蔬菜黑腐病菌 β-lactamase基因之功能與特性分析. 國立中興大學分子生物研究所碩士論文. 4. 張昕淳 (2003). 十字花科蔬菜黑腐病菌的β-lactam類抗生素敏感性突變株XKBLA之分析. 國立中興大學分子生物研究所碩士論文. 5. 李振維 (2010). Xanthomonas campestris β-lactamase基因之訊號序列與運送系統之探討. 國立中興大學分子生物研究所碩士論文. 6. 黃崧銘 (2010).多元轉錄調控因子Clp對Xanthomonas campestres pv. campestres β-lactamase表現之調控. 國立中興大學分子生物研究所碩士論文. 7. Asgarali, A., K. A. Stubbs, A. Oliver, D. J. Vocadlo, and B. L. Mark. 2009. Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal beta-lactam resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 53:2274-82. 8. Balcewich, M. D., T. M. Reeve, E. A. Orlikow, L. J. Donald, D. J. Vocadlo, and B. L. Mark. 2010. Crystal structure of the AmpR effector binding domain provides insight into the molecular regulation of inducible ampc beta-lactamase. J Mol Biol 400:998-1010. 9. Beeckman, D. S., and D. C. Vanrompay. 2010. Bacterial secretion systems with an emphasis on the chlamydial Type III secretion system. Curr Issues Mol Biol 12:17-41. 10. Biswas, L., R. Biswas, C. Nerz, K. Ohlsen, M. Schlag, T. Schafer, T. Lamkemeyer, A. K. Ziebandt, K. Hantke, R. Rosenstein, and F. Gotz. 2009. Role of the twin-arginine translocation pathway in Staphylococcus. J Bacteriol 191:5921-9. 11. Blaudeck, N., P. Kreutzenbeck, M. Muller, G. A. Sprenger, and R. Freudl. 2005. Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient tat-dependent protein translocation in the absence of TatB. J Biol Chem 280:3426-32. 12. Brown, D. F., and P. E. Reynolds. 1980. Intrinsic resistance to beta-lactam antibiotics in Staphylococcus aureus. FEBS Lett 122:275-8. 13. Buttner, D., and U. Bonas. 2010. Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev 34:107-33. 14. Carrasco-Lopez, C., A. Rojas-Altuve, W. Zhang, D. Hesek, M. Lee, S. Barbe, I. Andre, P. Ferrer, N. Silva-Martin, G. R. Castro, M. Martinez-Ripoll, S. Mobashery, and J. A. Hermoso. 2011. Crystal structures of bacterial peptidoglycan amidase AmpD and an unprecedented activation mechanism. J Biol Chem 286:31714-22. 15. Cristobal, S., J. W. de Gier, H. Nielsen, and G. von Heijne. 1999. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO J 18:2982-90. 16. Chan, J. W., and P. H. Goodwin. 1999. The molecular genetics of virulence of Xanthomonas campestris. Biotechnol Adv 17:489-508. 17. Chen, L., B. Hu, G. Qian, C. Wang, W. Yang, Z. Han, and F. Liu. 2009. Identification and molecular characterization of twin-arginine translocation system (Tat) in Xanthomonas oryzae pv. oryzae strain PXO99. Arch Microbiol 191:163-70. 18. da Silva, A. C., J. A. Ferro, F. C. Reinach, C. S. Farah, L. R. Furlan, R. B. Quaggio, C. B. Monteiro-Vitorello, M. A. Van Sluys, N. F. Almeida, L. M. Alves, A. M. do Amaral, M. C. Bertolini, L. E. Camargo, G. Camarotte, F. Cannavan, J. Cardozo, F. Chambergo, L. P. Ciapina, R. M. Cicarelli, L. L. Coutinho, J. R. Cursino-Santos, H. El-Dorry, J. B. Faria, A. J. Ferreira, R. C. Ferreira, M. I. Ferro, E. F. Formighieri, M. C. Franco, C. C. Greggio, A. Gruber, A. M. Katsuyama, L. T. Kishi, R. P. Leite, E. G. Lemos, M. V. Lemos, E. C. Locali, M. A. Machado, A. M. Madeira, N. M. Martinez-Rossi, E. C. Martins, J. Meidanis, C. F. Menck, C. Y. Miyaki, D. H. Moon, L. M. Moreira, M. T. Novo, V. K. Okura, M. C. Oliveira, V. R. Oliveira, H. A. Pereira, A. Rossi, J. A. Sena, C. Silva, R. F. de Souza, L. A. Spinola, M. A. Takita, R. E. Tamura, E. C. Teixeira, R. I. Tezza, M. Trindade dos Santos, D. Truffi, S. M. Tsai, F. F. White, J. C. Setubal, and J. P. Kitajima. 2002. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459-63. 19. Daniels, M. J., C. E. Barber, P. C. Turner, M. K. Sawczyc, R. J. Byrde, and A. H. Fielding. 1984. Cloning of genes involved in pathogenicity of Xanthomonas campestris pv. campestris using the broad host range cosmid pLAFR1. EMBO J 3:3323-8. 20. De Buck, E., E. Lammertyn, and J. Anne. 2008. The importance of the twin-arginine translocation pathway for bacterial virulence. Trends Microbiol 16:442-53. 21. Dietz, H., D. Pfeifle, and B. Wiedemann. 1996. Location of N-acetylmuramyl-L-alanyl-D-glutamylmesodiaminopimelic acid, presumed signal molecule for beta-lactamase induction, in the bacterial cell. Antimicrob Agents Chemother 40:2173-7. 22. Fournier, B., R. Aras, and D. C. Hooper. 2000. Expression of the multidrug resistance transporter NorA from Staphylococcus aureus is modified by a two-component regulatory system. J Bacteriol 182:664-71. 23. Gurlebeck, D., F. Thieme, and U. Bonas. 2006. Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. J Plant Physiol 163:233-55. 24. Hanson, N. D., and C. C. Sanders. 1999. Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae. Curr Pharm Des 5:881-94. 25. He, H., Q. Wang, L. Sheng, Q. Liu, and Y. Zhang. 2011. Functional characterization of Vibrio alginolyticus twin-arginine translocation system: its roles in biofilm formation, extracellular protease activity, and virulence towards fish. Curr Microbiol 62:1193-9. 26. He, Y. W., A. Y. Ng, M. Xu, K. Lin, L. H. Wang, Y. H. Dong, and L. H. Zhang. 2007. Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network. Mol Microbiol 64:281-92. 27. Jacobs, C., L. J. Huang, E. Bartowsky, S. Normark, and J. T. Park. 1994. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction. EMBO J 13:4684-94. 28. Jacobs, C., J. M. Frere, and S. Normark. 1997. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible beta-lactam resistance in gram-negative bacteria. Cell 88:823-32. 29. Joshi, M. V., S. G. Mann, H. Antelmann, D. A. Widdick, J. K. Fyans, G. Chandra, M. I. Hutchings, I. Toth, M. Hecker, R. Loria, and T. Palmer. 2010. The twin arginine protein transport pathway exports multiple virulence proteins in the plant pathogen Streptomyces scabies. Molecular Microbiology 77:252-271. 30. Katzen, F., D. U. Ferreiro, C. G. Oddo, M. V. Ielmini, A. Becker, A. Puhler, and L. Ielpi. 1998. Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J Bacteriol 180:1607-17. 31. Kerff, F., S. Petrella, F. Mercier, E. Sauvage, R. Herman, A. Pennartz, A. Zervosen, A. Luxen, J. M. Frere, B. Joris, and P. Charlier. 2010. Specific structural features of the N-acetylmuramoyl-L-alanine amidase AmiD from Escherichia coli and mechanistic implications for enzymes of this family. J Mol Biol 397:249-59. 32. Koebnik, R., A. Kruger, F. Thieme, A. Urban, and U. Bonas. 2006. Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J Bacteriol 188:7652-60. 33. Kong, K. F., A. Aguila, L. Schneper, and K. Mathee. 2010. Pseudomonas aeruginosa beta-lactamase induction requires two permeases, AmpG and AmpP. BMC Microbiol 10:328. 34. Lee, P. A., D. Tullman-Ercek, and G. Georgiou. 2006. The bacterial twin-arginine translocation pathway. Annu Rev Microbiol 60:373-95. 35. Lee, C. W., Y. H. Tseng, F. S. Deng, J. W. Lin, and S. F. Weng. 2012. Contribution of Phe7 to Tat-dependent export of beta-lactamase in Xanthomonas campestris. Antimicrob Agents Chemother. 36. Lin, C. W., Y. W. Huang, R. M. Hu, K. H. Chiang, and T. C. Yang. 2009. The role of AmpR in regulation of L1 and L2 beta-lactamases in Stenotrophomonas maltophilia. Res Microbiol 160:152-8. 37. Lorenz, C., and D. Buttner. 2009. Functional characterization of the type III secretion ATPase HrcN from the plant pathogen Xanthomonas campestris pv. vesicatoria. J Bacteriol 191:1414-28. 38. Maddocks, S. E., and P. C. Oyston. 2008. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154:3609-23. 39. Maldonado, B., H. Kneuper, G. Buchanan, K. Hatzixanthis, F. Sargent, B. C. Berks, and T. Palmer. 2011. Characterisation of the membrane-extrinsic domain of the TatB component of the twin arginine protein translocase. FEBS Lett 585:478-84. 40. Mant, A., T. Kieselbach, W. P. Schroder, and C. Robinson. 1999. Characterisation of an Arabidopsis thaliana cDNA encoding a novel thylakoid lumen protein imported by the delta pH-dependent pathway. Planta 207:624-7. 41. Maurer, C., S. Panahandeh, A. C. Jungkamp, M. Moser, and M. Muller. 2010. TatB functions as an oligomeric binding site for folded Tat precursor proteins. Mol Biol Cell 21:4151-61. 42. Mohr, T. J., H. Liu, S. Yan, C. E. Morris, J. A. Castillo, J. Jelenska, and B. A. Vinatzer. 2008. Naturally occurring nonpathogenic isolates of the plant pathogen Pseudomonas syringae lack a type III secretion system and effector gene orthologues. J Bacteriol 190:2858-70. 43. Musser, S. M., and S. M. Theg. 2000. Characterization of the early steps of OE17 precursor transport by the thylakoid DeltapH/Tat machinery. Eur J Biochem 267:2588-98. 44. Natale, P., T. Bruser, and A. J. Driessen. 2008. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane--distinct translocases and mechanisms. Biochim Biophys Acta 1778:1735-56. 45. Palmer, T., and B. C. Berks. 2011. The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 10:483-96. 46. Park, J. T., and T. Uehara. 2008. How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol Mol Biol Rev 72:211-27, table of contents. 47. Petrosino, J. F., R. S. Galhardo, L. D. Morales, and S. M. Rosenberg. 2009. Stress-induced beta-lactam antibiotic resistance mutation and sequences of stationary-phase mutations in the Escherichia coli chromosome. J Bacteriol 191:5881-9. 48. Pradel, N., J. Delmas, L. F. Wu, C. L. Santini, and R. Bonnet. 2009. Sec- and Tat-dependent translocation of beta-lactamases across the Escherichia coli inner membrane. Antimicrob Agents Chemother 53:242-8. 49. Porrua, O., M. Garcia-Jaramillo, E. Santero, and F. Govantes. 2007. The LysR-type regulator AtzR binding site: DNA sequences involved in activation, repression and cyanuric acid-dependent repositioning. Mol Microbiol 66:410-27. 50. Rigano, L. A., F. Siciliano, R. Enrique, L. Sendin, P. Filippone, P. S. Torres, J. Questa, J. M. Dow, A. P. Castagnaro, A. A. Vojnov, and M. R. Marano. 2007. Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Mol Plant Microbe Interact 20:1222-30. 51. Rossier, O., G. Van den Ackerveken, and U. Bonas. 2000. HrpB2 and HrpF from Xanthomonas are type III-secreted proteins and essential for pathogenicity and recognition by the host plant. Mol Microbiol 38:828-38. 52. Sanders, C. C., and W. E. Sanders, Jr. 1992. beta-Lactam resistance in gram-negative bacteria: global trends and clinical impact. Clin Infect Dis 15:824-39. 53. Sandkvist, M. 2001. Biology of type II secretion. Mol Microbiol 40:271-83. 54. Saier, M. H., Jr. 2006. Protein secretion and membrane insertion systems in gram-negative bacteria. J Membr Biol 214:75-90. 55. Schmidtke, A. J., and N. D. Hanson. 2006. Model system to evaluate the effect of ampD mutations on AmpC-mediated beta-lactam resistance. Antimicrob Agents Chemother 50:2030-7. 56. Sikdar, R., and W. T. Doerrler. 2010. Inefficient Tat-dependent export of periplasmic amidases in an Escherichia coli strain with mutations in two DedA family genes. J Bacteriol 192:807-18. 57. Torres, P. S., F. Malamud, L. A. Rigano, D. M. Russo, M. R. Marano, A. P. Castagnaro, A. Zorreguieta, K. Bouarab, J. M. Dow, and A. A. Vojnov. 2007. Controlled synthesis of the DSF cell-cell signal is required for biofilm formation and virulence in Xanthomonas campestris. Environ Microbiol 9:2101-9. 58. Uehara, T., and J. T. Park. 2002. Role of the murein precursor UDP-N-acetylmuramyl-L-Ala-gamma-D-Glu-meso-diaminopimelic acid-D-Ala-D-Ala in repression of beta-lactamase induction in cell division mutants. J Bacteriol 184:4233-9. 59. van der Ploeg, R., J. P. Barnett, N. Vasisht, V. J. Goosens, D. C. Pother, C. Robinson, and J. M. van Dijl. 2011. Salt sensitivity of minimal twin arginine translocases. J Biol Chem 286:43759-70. 60. Voulhoux, R., G. Ball, B. Ize, M. L. Vasil, A. Lazdunski, L. F. Wu, and A. Filloux. 2001. Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J 20:6735-41. 61. Weatherspoon-Griffin, N., G. Zhao, W. Kong, Y. Kong, Morigen, H. Andrews-Polymenis, M. McClelland, and Y. Shi. 2011. The CpxR/CpxA two-component system up-regulates two Tat-dependent peptidoglycan amidases to confer bacterial resistance to antimicrobial peptide. J Biol Chem 286:5529-39. 62. Weng, S. F., J. W. Lin, C. H. Chen, Y. Y. Chen, and Y. H. Tseng. 2004. Constitutive expression of a chromosomal class A (BJM group 2) beta-lactamase in Xanthomonas campestris. Antimicrob Agents Chemother 48:209-15. 63. Widdick, D. A., K. Dilks, G. Chandra, A. Bottrill, M. Naldrett, M. Pohlschroder, and T. Palmer. 2006. The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proc Natl Acad Sci U S A 103:17927-32. 64. Wiedemann, B., D. Pfeifle, I. Wiegand, and E. Janas. 1998. beta-Lactamase induction and cell wall recycling in gram-negative bacteria. Drug Resist Updat 1:223-6. 65. Yang, T. C., M. J. Tsai, J. J. Tsai, and R. M. Hu. 2011. Induction of a secretable beta-lactamase requires a long lag time in Xanthomonas campestris pv. campestris str. 17. Res Microbiol 162:999-1005. 66. Zhang, L., Z. Zhu, H. Jing, J. Zhang, Y. Xiong, M. Yan, S. Gao, L. F. Wu, J. Xu, and B. Kan. 2009. Pleiotropic effects of the twin-arginine translocation system on biofilm formation, colonization, and virulence in Vibrio cholerae. BMC Microbiol 9:114. 67. Zhang, Y., Q. Bao, L. A. Gagnon, A. Huletsky, A. Oliver, S. Jin, and T. Langaee. 2010. ampG gene of Pseudomonas aeruginosa and its role in beta-lactamase expression. Antimicrob Agents Chemother 54:4772-9.
Xanthomonas campestris pv. campestris (Xcc)為感染十字花科植物病原細菌,造成十字花科植物的黑腐病。大部分Xcc菌株具有抵抗β-lactam類抗生素能力。為了瞭解其抗菌機制,本研究針對β-lactamase運送路徑與調控機制進行探討。本研究證明Xc17之β-lactamae運送是透過Tat pathway。將Tat pathway組成蛋白tatA、tatB、tatC以及tatABC各別破壞後,Tat 突變株會失去對ampicillin抗性。根據Westen blotting結果顯示,tat突變株仍可正常表現Bla,但會以具酵素活性的前驅物形式滯留於胞內。在Xc17生理上,破壞Tat pathway除了造成菌體對於鹽類離子的耐受度改變外,在生長曲線、移動力、胞外酵素分泌、生物膜形成及病原性等性狀並無明顯的差異。實驗結果顯示,Xc17之β-lactamae運送為依賴Tat pathway系統,當Tat pathway組任一基因被破壞後,β-lactamase以前驅物型式滯留於胞內,無法分泌至胞質週緣區,導致菌體失去抗藥性。
Xc17之β-lactamase表現,主要是受到其上游ampR調控。本實驗中發現將ampR突變後,突變株仍可分泌少量之β-lactamase至胞質週緣區,推測缺失AmpR時,Xc17仍有基底量 (basal level)之Bla表現;而提升AmpR表現則會促進Bla表現。在啟動子活性測試上,Xc17的bla啟動子活性會受到ampicillin誘導而上升,而將bla上游啟動子區域一段預測為LysR-motif區域剔除,則會大幅降低bla啟動子活性,推測此為活化態AmpR結合區,供正向調控β-lactamase表現。此外,ampR突變株中,ampR啟動子活性受ampR基因缺失下降,認為AmpR具自我調控ampR基因功能。在clp (CRP-like protein gene)突變株TC817,推測anhMurNAc-tripeptide及UDP-MurNAc-pentapeptide含量極低,AmpR無法調控bla與ampR表現,因此,TC817的Bla表現轉變為誘導型。
其他識別: U0005-2008201215350100
Appears in Collections:分子生物學研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.