Please use this identifier to cite or link to this item:
標題: 可結合於微感測器之射頻傳輸器
RF transmitters for integrating micro sensors
作者: 林祐鋒
Lin, You-Feng
關鍵字: CMOS;CMOS;RF;oscillator circuit;inductor;micro pressure sensor;射頻;振盪電路;電感;微壓力感測器
出版社: 機械工程學系所
引用: [1] A. Raghavan, E. Gebara, C-H. Lee, S. Chakraborty, D.Mukherjee, D. Heo and J. Laskar, “A GaAs HBT 5.8 GHz OFDM Transmitter MMIC Chip Set,” IEEE Radio Frequency Integrated Circuits Symposium Digest, pp. 267-270, 2001. [2] B. A. Floyd, C. M. Hung and K. O. Kenneth, “Intra-Chip Wireless Interconnect for Clock Distribution Implemented With Integrated Antennas, Receivers, and Transmitters, ” IEEE Journal of Solid-State Circuits, vol. 37, pp. 543-552, 2002. [3] K. Nishikawa, B. Piernas, T. Nakagawa, K. Araki and K. Cho, “V-band Fully-integrated TX/RX Single-chip 3-D MMICs Using Commercial GaAs pHEMT Technology For High-speed Wireless Applications,” IEEE Gallium Arsenide Integrated Circuit Symposium Digest, pp. 97-100, 2003. [4] A. Molnar, B. Lu, S. Lanzisera, Ben W. Cook, and K. S. J. Pister, “An Ultra-low Power 900 MHz RF Transceiver for Wireless Sensor Networks,” Custom Integrated Circuits Conference, pp. 401-404, 2004. [5] Y. H. Chee, A. M. Niknejad and J. Rabaey, “An Ultra-Low Power Injection Locked Transmitter for Wireless Sensor Networks,” Custom Integrated Circuits Conference, pp. 797-800, 2005. [6] Y. C. Lee and C. S. Park, “A Very Compact 62 GHz Transmitter LTCC SiP Module for Wireless Terminals Applications,” Microwave and Optical Technology Letters, vol. 49, pp. 575-577, 2007. [7] P. C. Wang, C. J. Chang, W. M. Chiu, P. J. Chiu, C. C. Wang, C. H. Lu, K. T. Chen, M. C. Huang, Y. M. Chang, S. M. Lin, K. U. Chan, Y. H. Lin and C. C. Lee, “A 2.4 GHz Fully Integrated Transmitter Front End with +26.5-dBm On-Chip CMOS Power Amplifier,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 263-266, 2007. [8] E. Hynes, P. Elebert, D. McAuliffe, D. Doyle, M. O’Neill, W. A. Lane, H. Berney and M. Hill, “The CAP-FET, a Scaleable MEMS Sensor Technology on CMOS with Programmable Floating Gate,” International Electron Devices Meeting Technical Digest, pp. 41, 2001. [9] H. K. Trieu, N. Kordas and W. Mokwa, “Fully CMOS Compatible Capacitive Differential Pressure Sensors with On-chip Programmabilities and Temperature Compensation,” Proceedings of IEEE, vol. 2, pp. 1451-1455, 2002. [10] S. Buschnakowski, A. Bertz, W. Brauer, S. Heinz, R. Schuberth, G. Ebest and T. Gessner, “Development and Characterisation of A High Aspect Ratio Vertical FET Sensor for Motion Detection,” International Transducers, Solid-State Sensors, Actuators and Microsystems Conference, vol. 2, pp. 1391-1394, 2003. [11] L. S. Pakula, H. Yang, H. T. M. Pham, P. J. French and P. M. Sarro, “Fabrication of A CMOS Compatible Pressure Sensor for Harsh Environments,” Journal of Micromechanics and Microengineering, vol. 14, pp. 1478-1483, 2004. [12] L. J. Yang, C. C. Lai, C. L. Dai and P. Z. Chang, “A Piezoresistive Micro Prssure Sensor Fabricated by Commercial DPDM CMOS Process,” Tamkang Journal of Science and Engineering, vol. 8, pp. 67-73, 2005. [13] H. H. Wang, C. W. Hsui, W. H. Liao, L. J. Yang and C. L. Dai, “Micro Pressure Sensors of 50μm Size Fabricated by A Standard CMOS Foundry and A Novel Post Process”, Micro Electro Mechanical Systems, IEEE International Conference, pp. 578-581, 2006. [14] C. L. Dai and M. C. Liu, “Complementary Metal-Oxide-Semiconductor Microelectromechanical Pressure Sensor Integrated with Circuits on Chip,” Japanese Journal of Applied Physics, vol. 46, pp. 843-848, 2007. [15] Halliday, Resnick and Walker, Fundamentals of PHYSICS, sixth edition, John Wiley and Sons, pp. 688, 2001. [16] Halliday, Resnick and Walker, Fundamentals of PHYSICS, sixth edition, John Wiley and Sons, pp. 712, 2001. [17] C. T. Ko, S. H. Tseng and Michael S. C. Lu, “A CMOS Micromachined Capacitive Tactile Sensor with High-Frequency Output,” IEEE Journal of Microelectromachanical System, vol. 15, pp. 1708-1714, 2006. [18] 何中庸,振盪電路之設計與應用,全華科技圖書,1999。 [19] 洪俊榆,低驅動電壓之可調變微帶通濾波器,國立中興大學機械研究所碩士論文,2007。 [20] C. P. Yue, C. Ryu, J. Lau, T. H. Lee and S. S. Wong, “A Physical Model for Planar Spiral Inductors on Silicon,” IEEE International Electron Devices Meeting, pp. 155-158, 1996. [21] C. P. Yue and S. S. Wong, “On-chip Spiral Inductors with Patterned Ground Shields for Si-based RF ICs,” IEEE Solid-State Circuits, vol. 33, pp. 743-752, 1998. [22] [23] K. M. Sung and L. Yusuf, “CMOS digital integrated circuits analysis and design,” McGraw-Hill, 2004. [24] 戴銚葦,整合積體電路的FET微壓力感測器,國立中興大學機械研究所碩士論文,2007。
本論文利用TSMC CMOS 0.35μm 2P4M標準製程製作一可結合於微感測器之射頻傳輸器,此射頻傳輸器架構包含振盪電路與當成對外傳輸天線的圓形繞線電感,傳輸原理是藉由供給直流電壓於振盪電路的輸入端,振盪電路將輸出射頻電壓訊號,此訊號透過圓形繞線電感向外傳輸,利用外部接收線圈來接收此訊號並量測大小。

This study investigates the fabrication of RF transmitters for integrating micro sensors using the standard TSMC CMOS (complementary metal oxide semiconductor) 2P4M (double polysilicon four metal) process. The architecture of the RF transmitter includes an oscillator circuit and a circle inductor as an antenna. The operating principle of the RF transmitter is that the oscillator circuit would produce RF voltage when providing DC voltage to the oscillator circuit. The RF voltage is transmitted by the circle inductor and received by an outside coil.
The experimental results show that the output frequency of the oscillator circuit is 15-16MHz, 19-20MHz and 20-21MHz when applying DC voltage of 3V, 4V and 5V, respectively. The measured results are agreement with the simulated results. The transmitting distance of the RF transmitter is over five centimeter. The measured signal decreases about 2dBm when the distance increases two centimeter. On the other hand, this work studies the fabrication of a micro pressure sensor combined with the RF transmitter. The operating principle is that the sensing signal of the micro pressure sensor is converted by an amplified circuit, and then the signal is transmitted by the RF transmitter.
其他識別: U0005-2108200816352400
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.