Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20738
DC FieldValueLanguage
dc.contributor陳良築zh_TW
dc.contributor.author林恩德zh_TW
dc.contributor.authorLin, En-Teen_US
dc.contributor.other分子生物學研究所zh_TW
dc.date2012en_US
dc.date.accessioned2014-06-06T07:14:23Z-
dc.date.available2014-06-06T07:14:23Z-
dc.identifierU0005-1307201218082600en_US
dc.identifier.citation林毅佳 (2007) 香葉草醇10-羥基酶之異源表現之研究。國立台灣大學微生物與生化學研究所碩士論文。 羅舜芳 (2008) 利用T-DNA 插入性突變株探討水稻中 GA 2-oxidase, MADS14, MADS34 and Flavonoid 3''- hydroxylase 之功能。國立中興大學分子生物所博士論文: 139-179。 Besseau S., Hoffmann L., Geoffroy P., Lapierre C., Pollet B., Legrand M. (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19: 148-162. Bloor S. J., Bradley J. M., Lewis D. H., Davies K. M. (1998) Identification of flavonol and anthocyanin metabolites in leaves of Petunia "Mitchell" and its Lc transgenic. Phytochemistry 49: 1427-1430. Bogs, J., Ebadi, A., McDavid, D., Robinson, S. (2006) Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol. 140: 279–291. Brugliera, F., Barri-Rewell, G., Holton, T., Mason, J. (1999) Isolation and characterization of a flavonoid 3'' hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant J. 19: 441–451. Burbulis I.E., Iacobucci M., Shirley B.W. (1996) A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell 8: 1013–1025. Buer C.S., Muday G.K. (2004) The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16: 1191-1205. Buer C.S., Muday G.K., Djordjevic M.A. (2007) Flavonoids are differentially taken up and transported long distances in Arabidopsis. Plant Physiol. 145: 478-490. Chapple C. (1998) Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annu Rev Plant Physiol Plant Mol Biol. 49: 311–43. Cluis C.P., Mouchel C.F., Hardtke C.S. (2004) The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. Plant J. 38: 332–347. Forkmann G., Heller W., Grisebach H. (1980) Anthocyanin biosynthesis in flowers of Matthiola incana flavanone 3- and flavonoid 3’-hydroxylases. Z Naturforsch C Biosci 35:691–695. GI Arabidopsis (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815. Guo ZJ., Lamb C., Dixon RA. (1998) Potentiation of the oxidative burst and isoflavonoid phytoalexin accumulation by serine protease inhibitors. Plant Physiol.118 : 1487-94. Han Y., Vimolmangkang S., Soria-Guerra R.E., Rosales-Mendoza S., Zheng D., Lygin A.V., Korban S.S. (2010) Ectopic expression of apple F3’H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress. Plant Physiol 153: 806–820. Hirochika H., Sugimoto K., Otsuki Y., Tsugawa H., Kanda M. (1996) Retrotransposons of rice involved in mutations induced by tissue culture. ProcNatl Acad Sci U S A 93: 7783-7788. Hoffmann L., Besseau S., Geoffroy P., Ritzenthaler C., Meyer D., Lapierre C., Pollet B., Legrand M. (2004) Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell 16: 1446–1465. Hoffmann L., Maury S., Martz F., Geoffroy P., Legrand, M. (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J. Biol. Chem. 278: 95–103. Holton T.A., Brugliera F., Lester D.R., Tanaka Y., Hyland C.D., Menting J.G.T,. Lu C-Y., Farcy E., Stevenson T.W., Cornish E.C. (1993) Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366: 276–279. Holton T.A., Cornish E. (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7: 1071-1083. Hsing Y.I., Chern C.G., Fan M.J., Lu P.C., Chen K.T., Lo S.F., Sun P.K., Ho S.L., Lee K.W., Wang Y.C., Huang W.L., Ko S.S., Chen S., Chen J.L., Chung C.I., Lin Y.C., Hour A.L., Wang Y.W., Chang Y.C., Tsai M.W., Lin Y.S., Chen Y.C., Yen H.M., Li C.P., Wey C.K., Tseng C.S., Lai M.H., Huang S.C., Chen L.J., Yu, S.M. (2007) A rice gene activation/knockout mutant resource for highthroughput functional genomics. Plant Mol. Biol. 63: 351-364. IRGSP. (2005) The map-based sequence of the rice genome. Nature 436: 793-800. Ishiguro K., Taniguchi M., Tanaka Y. (2012) Functional analysis of Antirrhinum kelloggii flavonoid 3''hydroxylase and flavonoid 3’,5’-hydroxylase genes; critical role in flower color and evolution in the genus Antirrhinum. J. Plant Res. 125: 451-456. Jang I.C., Yang J.Y., Seo H.S., Chua N.H. (2005) HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Genes Dev. 19: 593–602. Jeong D.H., An S., Kang H.G., Moon S., Han J.J., Park S., Lee H.S., An K., An G. (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130: 1636-1644. Jeong D.H., An S., Park S., Kang H.G., Park G.G., Kim S.R., Sim J., Kim Y.O., Kim M.K., Kim J., Shin M., Jung M., An G. (2006) Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J 45: 123-132. Jeon J.S., Lee S., Jung K.H., Jun S.H., Jeong D.H., Lee J, Kim C., Jang S., Yang K., Nam J., An K., Han M.J., Sung R.J., Choi H.S., Yu J.H., Choi J.H., Cho S.Y., Cha S.S., Kim S.I., An G. (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22: 561-570. Jung C.S., Griffiths H.M., Jong D.M.D., Cheng S., Bodis M., Jong W.S.D. (2005) The potato P locus codes for flavonoid 3'',5''-hydroxylase. Theor. Appl. Genet. 110: 269–275. Kidd P.S., Llugany M., Poschenrieder C., Gunse B., and Barcelo J. (2001) The role of root exudates in aluminium resistance and silicon-induce damelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52: 1339-1352. Koes B.W., van Tulder M.W., van der Windt W.M., Bouter L.M. (1994) The efficacy of back schools: a review of randomized clinical trials. J Clin Epidemiol 47: 851-862. Lee J., He K., Stolc V., Lee H., Figueroa P., Gao Y., Tongprasit W., Zhao H., Lee I., Denga X. (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of Development. Plant Cell 19: 731–749. Middleton E.M., Teramura A.H. (1993) The role of flavonol glycosides and carotenoids in protecting soybean from ultraviolet-β damage. Plant Physiology 103: 741–752. Mo Y., Nagel C., Taylor LP. (1992) Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA 89: 7213–7217. Murray M., Thompson W. (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8: 4321-4325. Pelletier M.K., Burbulis I.E., Shirley B.W. (1999) Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and end-products in Arabidopsis seedlings. Plant Molecular Biology 40: 45–54. Reddy V. S., Dash S., Reddy A. R. (1995) Anthocyanin pathway in rice (Oryza Sativa L.)︰identification of a mutant showing dominant inhibition of anthocyanins in leaf and accumulation of proanthocyanidins in pericarp. Thero. Appl. Genet. 91:301-312. Sakamoto W., Ohmori T., Kageyama K., Miyazaki C., Saito A., Murata M., Noda K., Maekawa M. (2001) The purple leaf (Pl) locus of rice: the Plw allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in anthocyanin biosynthesis. Plant Cell Physiol 42:982–991. Sambrook J., Russell D. (2001) Molecular Cloning. Cold Spring Harbor Laboratory Press. Sasaki T., Burr B. (2000) International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. Curr Opin Plant Biol 3: 138-141. Schoenbohm, C., Martens, S., Eder, C., Forkmann, G., Weisshaar, B. (2000) Identification of the Arabidopsis thaliana flavonoid 3’-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol. Chem. 381: 749–753. Seitz C., Eder C., Deiml B., Kellner S., Martens S., and Forkmann G. (2006) Cloning, functional identification and sequence analysis of flavonoid 3''-hydroxylase and flavonoid 3'',5''-hydroxylase cDNAs reveals independent evolution of flavonoid 3'',5''-hydroxylase in the Asteraceae family. Plant Mol Biol 61: 365-381. Shih C.H., Chu H., Tang L., Sakamoto w., Maekawa M., Chu I., Wang M., Lo C. (2008) Functional characterization of key structural genes in rice Flavonoid biosynthesis. Planta 228: 1043–1054. Shih Y.J., Jeng T.L., Tseng T.H., Wang C.S. (2004) The composition and function of anthocyanins in colored rice. J. Taiwan Agric. Res. China 53: 221-228. Stewart R.N., Noris K.H., Asen S. (1975) Microspectrophotometric measurement of pH and pH effect on color of petal epidermal cells. Phytochemistry 14: 837-942. Takahashi R.,Dubouzet J.G., Matsumura H.,Yasuda K., Iwashina T. (2010) A new allele of flower color gene W1 encoding flavonoid 3’5’-hydroxylase is responsible for light purple flowers in wild soybean Glycine soja. BMC Plant Biology 10: 155-164. Tanaka, Y. (2006) Flower colour and cytochromes P450. Phytochem. Rev. 5: 283–291. Tanaka Y., Ohmiya A. (2008) Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr Opin Biotechnol 19: 190-197. Ulm R., Baumann A., Oravecz A., Ma’ te’ Z., A’ da’ mE’ ., Oakeley E.J., Scha‥ fer E., Nagy F. (2004) Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc. Natl. Acad. Sci. USA 101: 1397–1402. U.N. Population Division (2009) World population to exceed 9 billion by 2050: developing countries to add 2.3 billion inhabitants with 1.1 billion aged over 60 and 1.2 billion of working age. Press Release. Wang C. S., Tseng T. H., Lin C. Y. (2002) Rice biotech research at the Taiwan Agricultural Research Institute. APBN. 6: 950-956. Werck-Reichhart D., Bak S., Paquette S. C., Meyerowitz E.M. (2002) The Arabidopsis book. Rockville, MD: American Society of Plant Biologists 10: 1-28. Xu Li, Nicholas D. Bonawitz, Jing-Ke Weng, Clint Chapple. (2010) The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids. Plant Cell 22: 1620–1632. Yamazaki S., Sato K., Suhara K., Sakaguchi M., Mihara K., Omura T. (1993) Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P-450s. J Biochem. 114: 652–7. Ylstra B., Touraev A., Moreno RMB., Stoger E., van Tunen A.J., Vicentie O., Mol JNM., Heberle-Bors E. (1992) Flavonols stimulate development, germination, and tube growth of tobacco pollen. Plant Physiol 100: 902–907. Zhou W., Gong Y., Lu X., Huang C., Gao F. (2012) Molecular cloning and characterization of a flavonoid 3''-hydroxylase gene from purple-fleshed sweet potato (Ipomoea batatas) Mol. Biol. Rep. 39: 295–302. Zufall R.A. and Rausher M.D. (2003) The Genetic Basis of a Flower Color polymorphism in the Common Morning Glory (Ipomoea purpurea). Journal of Heredity 94: 442–448.en_US
dc.identifier.urihttp://hdl.handle.net/11455/20738-
dc.description.abstract本研究主要在探討 T-DNA 插入突變株 48000A,具有種子稔實率偏低、榖粒重量較輕、萌芽勢較慢、株高較矮等外表性狀之可能原因。此突變株之 T-DNA 插在水稻第九對染色體中,在 BAC clone 中為 OJ1344_B01 BAC 上 147,606 bp 的位置,其插入點兩側 30 KB 間經 RiceGAAS 分析推測共有七個基因分佈: OA-25、 OA-27、OA-29、 OA-30、 OA-31、 OA-36、OA-40。本研究證實了其中有四個基因 OA-25、OA-29、OA-30、OA-31 均被活化,而此四個基因均為 putative flavonoid 3’-hydroxylase 基因 (putative cytochrome P450, F3’H)。因此本研究對此四個基因進行功能上的研究。OA-29、OA-31 主要可以在幼苗及成熟的葉片中偵測到,而 OA-25 及 OA-30 則否。再將此四個 F3’H 與其他已發表的 F3’H 進行胺基酸序列比對,可以發現僅有 OA-25 同時具有 p450 三個重要的保留序列: 膜鑲嵌位、鐵離子結合位以及酵素活性位,但是 F3’H 的保留序列卻與其他物種的不盡相同。已知 F3’H 之功能為將類黃酮素化合物碳環之 β-ring 進行氫氧基化,以產生更多的類黃酮素化合物,而類黃酮素的含量亦會影響植物株高以及授粉的功能。於是進一步的利用 ubiquitin 啟動子分別大量表現此四個 putative F3’H 基因於野生型 TNG67 植株並且對這些性狀做調查。結果發現轉殖株 Ubi:OA-29、Ubi:OA-30、Ubi:OA-31 種子發芽較晚,在幼苗時期只有 Ubi:OA-30 有類似於 48000A 的矮株以及短根的性狀; 而進入生長發育時期後,48000A 以及轉殖株 Ubi:OA-30 均有矮株高、低稔實以及花粉效力較低之性狀,初步認為基因 OA-30 有影響植物生長以及授粉的功能。再偵測其類黃酮素以及花青素的含量,48000A、Ubi:OA-29 均較 TNG67 為高,花青素的含量則以 48000A、Ubi:OA-29、Ubi:OA-30 較 TNG67 高,顯示基因 OA-29、OA-30 的確有影響類黃酮素、花青素的代謝途徑。過去的文獻中亦指出類黃酮素代謝路徑的基因可受光的調控,在光源較弱的環境下類黃酮素的累積量會減少。於是利用遮光處理觀察幼苗的生長狀況,可以觀察到 48000A 在遮光處理後的確有回復根長的現象,而四個基因 OA-25、OA-29、OA-30、OA-31 的活化程度也減弱了,推測此四個基因均有受到光的調控。zh_TW
dc.description.abstractThe purpose of this study is try to elucidate the possible cause of the delay germination, shorter plant height and lighter grain weight in a T-DNA insertion rice mutant 48000A. This mutant has its T-DNA inserted at the 147,606th base of BAC OJ1344_B01 on chromosome number 9 and seven annotated genes OA-25, OA-27, OA-29, OA-30, OA-31, OA-36, OA-40 were identified within a 30 kb region flanking to the T-DNA insertion site. Four of them OA-25, OA-29, OA-30, OA-31 were activated in this mutant and they were annotated as the putative Flavonoid 3''- hydroxylase (F3’H) genes. Flavonoid 3''- hydroxylase (F3’H) takes part in the hydroxylation pattern of the β-ring. Several flavonoid substrates such as naringenin, dihydrokaempferol, kaempferol and apigenin, can be hydroxylated by F3’H. Analysis of gene expression profile showed that OA-25 and OA-30 can hardly be detected while OA-29 and OA-31 can be detected in seedlings and leaves in TNG67. Amino acid sequence alignment revealed that only OA-25 contains all the three p450 conserved motives: membrane anchor site, Fe (II) iron binding site, and enzyme activity site, and all these four putative F3’H showed different in the two F3’H conserved motives. In order to study the function of these putative F3’H genes, transgenic lines Ubi:OA-29, Ubi:OA-30, Ubi:OA-31 driven by ubiquitin promoter were obtained. All transgenic lines showed delay germination, however, at the maturation stage, only Ubi:OA-30 revealed shorter plant height, low pollen viability and low fertility. Furthermore, 48000A and Ubi:OA-29 have higher flavonoid and anthocyanin contents. It is interesting to realize that the four activated F3’H genes in mutant 48000A were down-regulated under dark condition and showed longer root length.en_US
dc.description.tableofcontents中文摘要..........................................i 英文摘要.........................................ii 目錄...........................................iii 圖表目錄.........................................iv 縮寫字對照表.......................................vi 前言....................................1 前人研究 一、水稻基因體的研究...................................2 二、水稻的後基因體時代...................................3 三、突變株48000A的研究....................................4 四、類黃酮素 (flavonoids) 的研究.......................5 材料與方法 一、 試驗材料...................................12 二、 藥品、酵素以及菌種...............................12 三、 儀器及設備..............13 四、 引子..............13 五、 水稻表現載體之構築及轉殖菌種..............13 六、 南方點墨法..............16 七、 標的蛋白抗體製備..............18 八、 蛋白表現之分析.............. 20 九、 植物光、暗萌芽(遮光萌芽) ..............21 十、 花粉活力的測試..............21 十一、類黃酮素及花青素的萃取..............21 十二、酵素活性分析..............22 結果 一、 水稻突變株48000A之T-DNA插入點附近基因表現之分析.......23 二、 四個Putative F3’H基因在不同發育時期以及幼穗表現分析......24 三、 四個Putative F3’H蛋白序列之分析.....................24 四、 Putative F3’H 於TNG67中大量表現之構築與農藝性狀分析.....25 五、 在光暗萌芽的表現分析...........29 六、 Putative F3’H蛋白表現之分析.................30 七、 Putative F3’H活性分析................32 討論.....................33 結論..........................37 參考文獻................................ 39 表................................45 圖............................................46 附表..................73 附圖…....................75 附錄.......................79 表目次 表一、2009年第二期作、2010年第一期作、2011第一期作及2012第一期作的農藝性狀調查...............45 圖目次 圖1、48000A T-DNA插入點兩側基因表現分析..............46 圖 2、四個putative flavonoid 3’ -hydroxylase 基因在不同發育時期表現分析…...…...47 圖3、不同物種間F3’H蛋白之p450保留序列之分析.............................................48 圖4、不同物種間F3’H蛋白其F3’H保留序列之分析..............................................49 圖5、植物表現載體Ubi:OA-25/pCAMBIA-1301之構築..........................................50 圖6、植物表現載體Ubi:OA-30/pCAMBIA-1301之構築..........................................51 圖7、植物表現載體Ubi:OA-31/pCAMBIA-1301之構築..........................................52 圖8、轉殖株Ubi:OA-30之確認及轉殖基因插入數目分析....................................53 圖9、轉殖株Ubi:OA-31之確認及其表現片段插入數目分析................................54 圖10、野生型、48000A、Ubi:OA-29、OA-30、OA-31 其15DAI性狀及基因表現比較...55 圖11、48000A及轉殖株田間株高調查以及基因表現的差異2010 (I)..............56 圖12、48000A及轉殖株田間株高調查以及基因表現的差異2012 (I)..............57 圖13、48000A及轉殖株外表及稻穗性狀調查 2012 (I)...................................58 圖14、48000A及轉殖株的穎花、花器觀察以及花粉活性分析............................59 圖15、利用遮光處理對48000A及轉殖株的發芽影響..........................................60 圖16、蛋白表現載體OA-25/pET-30A 之構築........................................................61 圖17、蛋白表現載體OA-29/pET-30A 之構築........................................................62 圖18、蛋白表現載體OA-30/pET-30A 之構築........................................................63 圖19、蛋白表現載體OA-31/pET-30A 之構築........................................................64 圖20、蛋白表現載體OsF3’Ha/pET-30A 之構築.............................................65 圖21、Anti-His6x- OA-25蛋白之誘導及純化.......................................................66 圖22、Anti-His6x- OA-29蛋白之誘導及純化.......................................................67 圖23、Anti-His6x- OA-30蛋白之誘導及純化.......................................................68 圖24、Anti-His6x- OA-31蛋白之誘導及純化.......................................................69 圖25、Anti-His6x- OA-25、29、30、31純化蛋白之濃縮..................................70 圖26、以西方點墨法分析野生型、48000A、Ubi:OA-29、Ubi:OA-30、Ubi:OA-31中蛋白表現情形.................................71 圖27、利用HPLC分析Putative flavonoid 3’-hydroxylase的酵素活性.........................72 附表 附表1、偵測基因表現的引子..................73 附表2、製作構築的引子,複製片段涵蓋範圍包含該基因全長...........................74 附圖 附圖1、類黃酮素 flavonoids 代謝途徑......75 附圖2、Phenylpropanoid 代謝途徑.............76 附圖3、類黃酮素代謝途徑顏色示意圖........77 附圖4、HY5調控基因CHS機制...................78 附錄 附錄1、48000A突變株中T-DNA插入點附近預測基因名稱、分布位置及經由T-DNA插入所影響基因表現情形...............................79 附錄2、48000A的發芽情形、幼苗生長狀況、株高及百粒重..................80 附錄3、48000A突變株之質體救援序列T-DNA插入點兩側基因分布情形..........81 附錄4、水稻中F3’H及F3’5’H的親緣關係樹狀圖及胺基酸序列相似度................82zh_TW
dc.language.isozh_TWen_US
dc.publisher分子生物學研究所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1307201218082600en_US
dc.subjectT-DNAzh_TW
dc.subjectT-DNAen_US
dc.subject類黃酮素zh_TW
dc.subject穀粒發育異常zh_TW
dc.subjectFlavonoidsen_US
dc.title利用水稻 T‐DNA 插入導致突變之基因選殖及功能分析‐穀粒發育異常突變株 48000A 之研究zh_TW
dc.titleRice functional genomics study using T‐DNA insertion mutants - characterization of a special mutant 48000Aen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
item.fulltextno fulltext-
item.cerifentitytypePublications-
Appears in Collections:分子生物學研究所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.