Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2075
DC FieldValueLanguage
dc.contributor薛康琳zh_TW
dc.contributor陳炎洲zh_TW
dc.contributor.advisor簡瑞與zh_TW
dc.contributor.advisorRei-Yu Cheinen_US
dc.contributor.author高詠翔zh_TW
dc.contributor.authorKao, Uang-Shangen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-05T11:42:28Z-
dc.date.available2014-06-05T11:42:28Z-
dc.identifierU0005-2108200821483800zh_TW
dc.identifier.citation[1].林昇佃、徐子隆等 編輯“燃料電池:新世紀能源”,滄海書局出版,2004。 [2].元智大學燃料電池中心,http://www.yzu.edu.tw [3].A. Karim,J. Bravo,D. Gor,T. Conant,A. Datye,“Comparison of wall-coated and packed-bed reactors for steam reforming of methanol,”Catalysis Today 110 (2005) 86-91. [4]. K. Takeda, A. Baba, Y. Hishinuma, T. Chikahisa, “Performance of a methanol reforming system for a fuel cell powered vehicle and system evaluation of a PEFC system,” JSAE Review 231(2002) 83–188. [5]. W. Wiese, B. Emonts, R. Peters, “Methanol of steam reforming in a fuel cell drive system,” Journal of Power Source 84 (1999) 187-193. [6]. L. Alejo, R. Lago, MA. Pena, J.L.G. Fierro, “Partial Oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts,” Applied Catalysis A : General, 162 (1997) 281-297. [7].Y. M. Lin,M. H. Rei,“Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor,”Catalysis Today Vol.67 (2001) 77-84. [8].T. Kim,S. Kwon,“Design,fabrication and testing of a catalytic microreactor for hydrogen production,”Journal of Micromech and Microengineering 16 (2006) 1760-1768. [9].S. T. Yong,K. Hidajat and S. Kawi,“Reaction of auto thermal steam reforming of methanol to hydrogen using a novel nano CuZnAl-catalyst,” Journal of Power Sources 131 (2004) 91-5. [10].B. Lindstrom and L. J. Pettersson,“Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications,” International Journal of Hydrogen Energy 26 (2001) 923-33. [11].E. R. Delsman, C. U. Uju,J. C. Schouten and K. J. Ptasinski,“Energy analysis of an integrated fuel processor and fuel cell (FP-FC) system Exergy at press,” (2006). [12].Y. KAWAMURA,N. OGURA,T. YAHATA,K. YAMAMOTO,T. TERAZAKI,T. YAMAMOTO,A.IGARASHI,“Multi-layered Micro- reactor System with Methanol Reformer for Small PEMFC,”Journal of Chemical Engineering of Japan,Vol. 38 NO. 10 (2005) 854-858. [13].T. Terazaki,M. Nomura,K. Takeyama,O. Nakamura,T. Yamamoto,“Development of multi-layered microreactor with methanol reformer for small PEMFC,”Journal of Power Sources 145 (2005) 691-696. [14].L. Pan,S. Wang,“Methanol steam reforming in a compact plate-fin reformer for fuel-cell systems,”International Journal of Hydrogen Energy 30 (2005) 973-979. [15].宋隆裕,“燃料電池用甲醇重組器之測試研究,”能源季刊,第24卷,pp.69-88,83年1月。 [16].G.Park,S.D.Yim,Y.G.Yoon,D.J.Seo,K.Eguchi,C.S.Kim,“Hydrogen production with integrated microchannel fuel processor using methanol for portable fuel cell systems,”Catalysis Today,Vol.110 (2005) 108-113. [17].C.Pan,R.He,Q.Li,J.O.Jensen,N.J.Bjerrum,H.A.Hjulmand,A.B.Jensen,“Integration of high temperature PEM fuel cells with a methanol reformer,”Journal of Power Sources Vol.145 (2005) 392-398. [18].D.J.Seo,W.L.Yoon,Y.G.Yoon,S.H.Park,G.G.Park,C.S.Kim,“Development of a micro fuel processor for PEMFCs,”Electrochimica Acta Vol.50 (2004) 719-723. [19].J. Bravo,A. Karim,T. Conant,G. P. Lopez,Abhaya Datye,“Wall coating of a CuO/ZnO/ methanol steam reforming catalyst for micro-channel reformers,”Chemical Engineering Journal 101 (2004) 113-121. [20].A. Karim,J. Bravo,A. Datye,“Nonisothermality in packed bed reactors for steam reforming of methanol,”Applied Catalysis A: General 282 (2005) 101-109. [21]. 詹世弘,“燃料電池發展現況與未來趨勢”,元智大學燃料電池產業研發人才培訓班。 [22].林仁信,“自發熱甲醇重組器製氫性能量測,”碩士論文,中興大學機械工程研究所,民國94年。 [23].亞洲電子科技雜誌,http://www.neataiwan.com.tw [24]. 曲新生、陳發林 編著,“氫能技術”,五南圖書出版公司出版,2006。 [25]. G. Hoogers “FUEL CELL TECHNOLOGY ,”The feuling problem Fuel Cell System (2002) 5-1~5-21. [26]. 林弘民,“燃料電池用自發熱甲醇重組器性能量測與數值模擬”,碩士論文,中興大學機械工程研究所,2004。 [27].呂智傑,“電渡式多孔銅塊熱沉實驗與模擬”,碩士論文,中興大學機械工程研究所,2006。 [28].A. Karim,J. Bravo,A. Datye,“Nonisothermality in packed bed reactors for steam reforming of methanol,”Applied Catalysis A: General 282 (2005) 101-109. [29]. 林弘民,“燃料電池用自發熱甲醇重組器性能量測與數值模擬”,碩士論文,中興大學機械工程研究所,2004。 [30].何建儒,“內建熱源式甲醇重組器性能量測”,碩士論文,中興大學機械工程研究所,2006。 [31].安捷倫科技有限公司LSCA訓練中心,“Agilent 6890 GC 氣相層析儀軟體操作”,2006年6月。zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/2075-
dc.description.abstract本研究設計不同形式之外加熱源式甲醇重組器,以及不同流道與觸媒面積對甲醇反應的變化,主要採用甲醇、水當作重組燃料,主要以傳統的流道構造,對於流道寬度比較,或是以流速、溫度來量測其結果影響,達到提升整體氫氣轉換的效率之目的。 本實驗設計之流道結構為平板鰭片,利用CNC加工切割出等長溝矩式流道,其中分有不同單寬度流道設計以及無流道設計。觸媒部分本次實驗是由MDC-3由德商產品(suchimi) Cu/ZnO 作為本次實驗觸媒,其coating重量皆為50mg,在相同操作條件下,探討產氫之效率,如甲醇轉換率、產氫量、CO產量…等,並將不同流道設計做比較。 實驗結果方面,在某些範圍內較高流速以及較低溫度下對於甲醇轉換率是會降低的,但是在產氫量是隨高流速增加的,因此在觸媒重量與燃料甲醇比例下,會有其產氫量與甲醇轉換率的關係圖,亦即會有其較佳的參數條件。此外本次實驗重組器反應段面積最大最小分有3.9 與6.465 ,設定的操作溫度範圍為240-320℃之間,觸媒塗佈重量皆控制在50mg,S/C比為1.1,反應結果得知甲醇消耗率最高可達98%,氫氣濃度大約為74%,最大氫產量約為91.9(ml/min),CO產量皆在1.5%以下。zh_TW
dc.description.abstractIn this study, performance of steam-methanol reforming using microchannel reactors is experimentally investigated. The microchannel reactor is similar to microchannel heat sink having several plate fins and channels. The reactors are designed to have various surface areas accomplished by using different numbers of channels. The reactor without any plate fins are used as the comparison basis. The commercial Cu/ZnO (Suchimi Inc., German) is used as the catalyst and coated around the channel surfaces. In order to realize the effect of geometric design of reactor on the reforming performance, the catalyst weigh is fixed as 50mg for all the reactors studied. The working fluid is the mixture of methanol and water with the steam/carbon ratio (S/C ratio ) of 1.1. By setting the reforming temperature and methanol-water mixture flow in the ranges of 240to 320℃and 1.8 to 5.4 ml/hr, respectively, it is found that methanol conversion efficiency, hydrogen production rate and carbon dioxide generation rate are mainly dependent on the reforming temperature and flow rate of water-methanol mixture. Increasing the catalyst-coated area can enhance the performance of reforming but is not significant.en_US
dc.description.tableofcontents目錄 中文摘要……………………………………………………………… Ⅰ Abstract……………………………………………………………… Ⅱ 目錄…………………………………………………………………… Ⅲ 圖目錄………………………………………………………………… Ⅵ 表目錄………………………………………………………………… Ⅸ 第一章 緒論…………………………………………………………… 1 1.1 前言…………………………………………………………1 1.2 重組器發展與研究…………………………………………3 1.3 文獻回顧……………………………………………………4 1.4 研究動機與目的……………………………………………7 第二章 甲醇重組產氫原理……………………………………………18 2.1 燃料的選用……………………………………………………… 18 2.2 甲醇重組反應製氫原理………………………………… 18 2.3 部份氧化重組法(POX)……………………………………19 2.4 蒸氣重組法(SR)………………………………………… 19 2.5 自發熱重組法(ATR)………………………………………20 第三章 微流道甲醇蒸氣重組器設計與製作…………………………25 3.1 微流道甲醇蒸氣重設計………………………………… 25 3.2 不鏽鋼機械加工………………………………………… 26 3.3 觸媒結構設計…………………………………………… 27 第四章 實驗設備、方法及步驟………………………………………34 4.1 系統設計………………………………………………… 34 4.2 實驗設備………………………………………………… 34 4.3 氣體量測系統…………………………………………… 38 4.4 G.C.實驗量測方式與G.C.結果分析方法……………… 41 4.5 溫度量測………………………………………………… 42 4.6 實驗方法與步驟………………………………………… 43 第五章 實驗結果與討論分析…………………………………………58 5.1 G.C.氣體量測結果分析………………………………… 58 5.2 甲醇消耗率及氫氣產量計算…………………………… 59 5.3 操作條件………………………………………………… 61 5.4實驗驗證……………………………………………………61 5.5流道設計、流速與重組器溫度對轉換率、產氫及CO產量 之影響…………………………………………………… 62 5.6 結論……………………………………………………… 63 第六章 結果與未來展望………………………………………………70 6.1結論…………………………………………………………70 6.2未來研究方向………………………………………………71 參考文獻……………………………………………………………… 72 圖目錄 圖1.1、日立萬勝開發PMFC……………………………………………12 圖1.2、日商CASIO開發的重組器…………………………………… 13 圖1.3、PMFC應用於筆記型電腦………………………………………13 圖1.4、雷敏宏教授重組器本體構造示意圖…………………………14 圖1.5、Kim與Kwon設計之小型觸媒產氫重組器…………………… 14 圖1.6、KAWAMURA等人研發的小型重組器……………………………15 圖1.7、Pan及Wang等人所研究的交叉型平板鰭片式重組器……… 15 圖1.8、宋隆裕所自行設計之甲醇重組器……………………………16 圖1.9、Park 等人設計的微型甲醇重組器………………………… 16 圖1.10、Pan等人設技之甲醇重組器……………………………… 17 圖1.11、Seo等人設計的微型甲醇重組器………………………… 17 圖2.1:甲醇自發熱重組法中,x值對反應吸放熱的影響………… 24 圖3.1、斜線區域為觸煤塗佈區塊……………………………………28 圖3.2、不鏽鋼甲醇蒸氣重組器示意圖………………………………29 圖3.3、不同流道設計示意圖…………………………………………30 圖3.4、燃料經過的區段平面示意圖…………………………………31 圖3.5、重阻器平貼於加熱板…………………………………………31 圖3.6、不鏽鋼CNC加工後實照……………………………………… 32 圖 3.7、本研究使用之MDC-3觸媒………………………………… 32 圖3.8、塗佈觸媒不銹鋼示意圖………………………………………33 圖4.1、甲醇與水混合溶液……………………………………………47 圖4.2、實驗流程示意圖………………………………………………48 圖4.3、重組器合成示意圖……………………………………………48 圖4.4、針筒式幫浦……………………………………………………49 圖4.5、預熱器…………………………………………………………49 圖4.6、實驗架構………………………………………………………50 圖4.7、K-Type量測實況………………………………………………50 圖4.8、觸媒塗佈步驟…………………………………………………51 圖4.9、塗佈完之重組器………………………………………………51 圖4.10、冷凝系統…………………………………………………… 52 圖4.11、濾水瓶示意圖……………………………………………… 52 圖4.12、填充管柱與開管毛細管柱………………………………… 53 圖4.13、TCD檢測器示意結構圖………………………………………53 圖4.14、G.C(氣相量測儀)………………………………………… 54 圖4.15、以氮與氬氣比較圖………………………………………… 55 圖4.16、集氣袋……………………………………………………… 56 圖4.17、預熱器溫度控制方式……………………………………… 56 圖4.18、K-Type轉角90℃溫度量測棒……………………………… 57 圖4.19、探測棒不同溫度校正……………………………………… 57 圖5.1、GC量測結果………………………………………………… 65 圖5.2、甲醇轉換率與氫產量與Space time之關係……………… 66 圖5.3、T=280℃時,甲醇轉換率與氫產量與流速之情況………… 66 圖5.4、240℃下甲醇轉換率、氫產量與CO產量隨W/F之變化情行 67 圖5.5、280℃下甲醇轉換率、氫產量與CO產量隨W/F之變化情行 68 圖5.6、320℃下甲醇轉換率、氫產量與CO產量隨W/F之變化情行 69 表目錄 表1.1 不同型態之燃料電池………………………………………… 10 表1.2、常用的儲氫方法及優缺點……………………………………11 表1.3、氫氣性質………………………………………………………12 表2.1、甲醇的性質……………………………………………………22 表2.2、甲醇重組器三種反應方法的比較……………………………22 表2.3、甲醇重組器三種反應優缺點比較……………………………23 表 3.1、MDC-3觸媒成分………………………………………………28 表4.1、幫浦規格………………………………………………………46 表4.2、GC操作參數……………………………………………………46 表4.3、K-TYPE參數……………………………………………………47zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108200821483800en_US
dc.subjectFuel sellen_US
dc.subject重組器zh_TW
dc.subjectMethanol Steam Reformingen_US
dc.subjectMicrochannel Reactorsen_US
dc.subject微流道zh_TW
dc.subject燃料電池zh_TW
dc.subject甲醇zh_TW
dc.title利用微流道反應器進行甲醇蒸氣重組產氫之實驗探討zh_TW
dc.titleExperimental Study on Hydrogen Production using Methanol Steam Reforming in Microchannel Reactorsen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.