Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2077
標題: 複合材料轉子系統亞共振與過共振響應之探討
Studies of Subharmonic and Superharmonic Responses of Composite Rotor Systems
作者: 賴國豪
Lai, Kuo-Hao
關鍵字: subharmonic;亞共振;superharmonic;rotor systems;過共振;轉子系統
出版社: 機械工程學系所
引用: [1] An-Chen Lee and Yuan Kang and Shin-Li Liu, “Steady-State Analysis of a Rotor Mounted on Nonlinear Bearings by The Transfer Matrix Method,” International Journal of Mechanical Sciences, Vol. 35, pp. 479-490, 1993. [2] Z. Ji and J. W. Zu, “Method of Multiple Scales for Vibration Analysis of Rotor-Shaft Systems with Non-Linear Bearing Pedestal Model,” Journal of Sound and Vibration, Vol. 218(2), pp. 293-305, 1998. [3] Z. Ji and J. W. Zu, “Steady-State Response of Continuous Nonlinear Rotor-Bearing Systems Using Analytical Approach,” Journal of Engineering for Gas Turbines and Power, Vol. 120, pp. 751-759, 1998. [4] R. Sino and T.N. Baranger and E. Chatelet and G. Jacquet, ”Dynamic Analysis of a Rotating Composite Shaft,” Composites Science and Technology, Vol. 68, pp. 337-345, 2008. [5] V. P. Iu, Y. K. Cheung, and S. L. Lau “Nonlinear Vibration Analysis of Multilayer Beams by Incremental Finite Elements, Part I: Theory and Numerical Formulation,” Journal of Vibration and Acoustics, Vol. 100, pp. 359-372, 1985. [6] R. K. Kapania and S. Raciti, “Nonlinear Vibrations of Unsymmetrically Laminated Beams,” AIAA Journal, Vol. 27, pp. 201-210, 1989. [7] M. Ganapathi, B. P. Patel, J. Saravanan and M. Touratier “ Application of Spline Element for Large Amplitude Free Vibrations of Laminated Orthotropic Sraight/Curved Beams,” Composites Part B, Vol. 29B, pp. 1-8, 1998. [8] S.K. Das and P.C. Ray and G. Pohit, ”Free Vibration Analysis of a Rotating Beam with Nonlinear Spring and Mass system,” Journal of Sound and Vibration, Vol. 301, pp. 165-188, 2007. [9] K. G. Muthurajan and K. Sankaranarayanasamy and S. B. Tiwari and B. Nageswara Rao, ”Nonlinear vibration analysis of initially stressed thin laminated rectangular plates on elastic foundations,” Journal of Sound and Vibration, Vol. 282, pp. 949-969, 2005. [10] 彭文彬, “複材旋轉軸非線性振動之研究,” 碩士論文, 中興大學機械研究所, 2002. [11] Yeon-Sun Choi, “Nonlinear Steady-State Response of a Rotor-Support System,” Journal of Sound and Vibration, Vol. 109, pp. 255-261, 1987. [12] H. Diken, “Non-linear Vibration Analysis and Subharmonic Whirl Frequencies of The Jeffcott Rotor Model,” Journal of Sound and Vibration, Vol. 243, pp. 117-125, 2001. [13] J.C. Ji and A.Y.T. Leung, “Non-linear Oscillations of a Rotor-magnetic Bearing System under Superharmonic Resonance Conditions,” International Journal of Non-Linear Mechanics, Vol. 38, pp. 829-835, 2003. [14] 陳鄭貴, “複合材料旋轉軸之動態響應與其振動控制之探討,” 碩士論文,中興大學機械研究所, 1998. [15] 詹政川, “承受持續外激力旋轉軸振動之主動控制,” 碩士論文,中興大學機械研究所, 1996. [16] Ali Hasan Nayfeh and Dean T. Mook, Nonlinear oscillations, New York, Wiley, 1979. [17] Ali Hasan Nayfeh, Problems in Perturbation, New York, Wiley, 1985. [18] Ali Hasan Nayfeh, Introduction to Perturbation Techniques, New York, Wiley, 1993.
摘要: 
本論文主要的目的是針對承載於非線性軸承之旋轉軸系統,當其轉速激發亞共振或過共振時,系統穩態響應的研究。本文運用先前完成之複合材料旋轉軸系統的有限元素運動方程式,配合多尺度擾動法進行分析,其中有關系統的部份,我們將其視為含有剛性轉盤的撓性軸,並且由非線性的軸承所支撐,其中非線性的軸承是以非線性彈簧與線性阻尼器來模擬。

首先利用模態分析法將轉子系統之有限元素運動方程式,化簡為局部解耦的非線性模態方成,在依據此方程式配合多尺度擾動法推導出亞共振與過共振之關係式。於本文範例中除觀察系統的響應和轉速的關係、比較線性及非線性、亞共振和過共振響應之間的相異,文中探討等向性材料軸及複合材料軸在非線性勁度值改變時之轉速與振幅關係、存在亞共振的參數邊界,以及複合材料軸在不同的疊層角度轉速與振幅之關係。
URI: http://hdl.handle.net/11455/2077
其他識別: U0005-2108200822463600
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.