Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/20806
DC Field | Value | Language |
---|---|---|
dc.contributor | 陳良築 | zh_TW |
dc.contributor | Liang-Jwu Chen | en_US |
dc.contributor.author | 余承駿 | zh_TW |
dc.contributor.author | Yu, Cheng-Chun | en_US |
dc.contributor.other | 分子生物學研究所 | zh_TW |
dc.date | 2013 | en_US |
dc.date.accessioned | 2014-06-06T07:14:34Z | - |
dc.date.available | 2014-06-06T07:14:34Z | - |
dc.identifier | U0005-2708201310482000 | en_US |
dc.identifier.citation | Abebe T, Skadsen RW, Kaeppler HF. 2005. A proximal upstream sequence controls tissue-specific expression of Lem2, a salicylate-inducible barley lectin-like gene. Planta 221(2): 170-183. Afzal AJ, Wood AJ, Lightfoot DA. 2008. Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Molecular Plant-Microbe Interactions 21(5): 507-517 Benjamins R, Scheres B. 2008. Auxin: the looping star in plant development. Annual Review of Plant Biology 59: 443-465. Bergey DR, Orozco-Cardenas M, De Moura DS, Ryan CA. 1999. A wound-and systemin-inducible polygalacturonase in tomato leaves. Proceedings of the National Academy of Sciences 96(4): 1756-1760. Berrocal‐Lobo M, Molina A, Solano R. 2002. Constitutive expression of ETHYLENE‐RESPONSE‐FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. The Plant Journal 29(1): 23-32. Bihani PC, B.; Bhargava, S. 2011. Transgenic expression of sorghum DREB2 in rice improves tolerance and yield under water limitation. Journal of Agricultural Science 149: 95-101. Buttner M, Singh KB. 1997. Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proceedings of the National Academy of Sciences 94(11): 5961-5966. Catala R, Santos E, Alonso JM, Ecker JR, Martinez-Zapater JM, Salinas J. 2003. Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15(12): 2940-2951. Chen W, Chao G, Singh KB. 1996. The promoter of a H2O2‐inducible, Arabidopsis glutathione S‐transferase gene contains closely linked OBF‐and OBP1‐binding sites. The Plant Journal 10(6): 955-966. Chen X, Zhang Z, Liu D, Zhang K, Li A, Mao L. 2010. SQUAMOSA promoter‐binding protein‐like transcription factors: Star players for plant growth and development. Journal of Integrative Plant Biology 52(11): 946-951. Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S. 2002. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiology 129(2): 661-677. Chern C-G, Fan M-J, Yu S-M, Hour A-L, Lu P-C, Lin Y-C, Wei F-J, Huang S-C, Chen S, Lai M-H. 2007. A rice phenomics study—phenotype scoring and seed propagation of a T-DNA insertion-induced rice mutant population. Plant Molecular Biology 65(4): 427-438. Chisholm ST, Parra MA, Anderberg RJ, Carrington JC. 2001. Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus. Plant Physiology 127(4): 1667-1675. Choi M-S, Woo M-O, Koh E-B, Lee J, Ham T-H, Seo HS, Koh H-J. 2012. Teosinte Branched 1 modulates tillering in rice plants. Plant Cell Reports 31(1): 57-65. Dangl JL, Jones JD. 2001. Plant pathogens and integrated defence responses to infection. Nature 411(6839): 826-833. Dow M, Newman M-A, von Roepenack E. 2000. The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annual Review of Phytopathology 38(1): 241-261. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2003. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. The Plant Journal 33(4): 751-763. Durrant W, Dong X. 2004. Systemic acquired resistance. Annual Review of Phytopathology 42: 185-209. El‐Gendy W, Brownleader M, Ismail H, Clarke P, Gilbert J, El‐Bordiny F, Trevan M, Hopkins J, Naldrett M, Jackson P. 2001. Rapid deposition of wheat cell wall structural proteins in response to Fusarium‐derived elicitors. Journal of Experimental Botany 52(354): 85-90. El Ouakfaoui S, Schnell J, Abdeen A, Colville A, Labbe H, Han S, Baum B, Laberge S, Miki B. 2010. Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Molecular Biology 74(4-5): 313-326. Felix G, Duran JD, Volko S, Boller T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal 18(3): 265-276. Feng JX, Liu D, Pan Y, Gong W, Ma LG, Luo JC, Deng XW, Zhu YX. 2005. An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family. Plant Molecular Biology 59(6): 853-868. Fischer U, Droge-Laser W. 2004. Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Molecular Plant-Microbe Interactions 17(10): 1162-1171. Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12(3): 393-404. Gholizadeh A, Kohnehrouz SB. 2013. DUF538 Protein Super Family is Predicted to be the Potential Homologue of Bactericidal/Permeability-Increasing Protein in Plant System. The Protein Journal 32(3): 163-171. Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S, Kemmerling B, Gotz F, Glawischnig E, Lee J, Felix G. 2007. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. Journal of Biological Chemistry 282(44): 32338-32348. Hao D, Ohme-Takagi M, Sarai A. 1998. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. Journal of Biological Chemistry 273(41): 26857-26861. Hsing Y-I, Chern C-G, Fan M-J, Lu P-C, Chen K-T, Lo S-F, Sun P-K, Ho S-L, Lee K-W, Wang Y-C. 2007a. A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Molecular Biology 63(3): 351-364. Hu YX, Wang YX, Liu XF, Li JY. 2004. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Research 14(1): 8-15. Imin N, Nizamidin M, Wu T, Rolfe BG. 2007. Factors involved in root formation in Medicago truncatula. Journal of Experimental Botany 58(3): 439-451. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X. 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics 42(6): 541-544. Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK. 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6(9): 1211-1225. Jung J, Won SY, Suh SC, Kim H, Wing R, Jeong Y, Hwang I, Kim M. 2007. The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta 225(3): 575-588. Kamal AHM, Kim K-H, Shin K-H, Choi J-S, Baik B-K, Tsujimoto H, Heo HY, Park CS, Woo SH. 2010. Abiotic stress responsive proteins of wheat grain determined using proteomics. Australian Journal of Crop Science 4(3): 196-208. Kang HG, Foley RC, Onate‐Sanchez L, Lin C, Singh KB. 2003. Target genes for OBP3, a Dof transcription factor, include novel basic helix‐loop‐helix domain proteins inducible by salicylic acid. The Plant Journal 35(3): 362-372. Khraiwesh B, Zhu J-K, Zhu J. 2012. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms 1819(2): 137-148. Kitomi Y, Ito H, Hobo T, Aya K, Kitano H, Inukai Y. 2011. The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. The Plant Journal 67(3): 472-484. Klein J, Saedler H, Huijser P. 1996. A new family of DNA binding proteins includes putative transcriptional regulators of theAntirrhinum majus floral meristem identity geneSQUAMOSA. Molecular and General Genetics 250(1): 7-16. Koumoto T, Shimada H, Kusano H, She K-C, Iwamoto M, Takano M. 2013. Rice monoculm mutation moc2, which inhibits outgrowth of the second tillers, is ascribed to lack of a fructose-1, 6-bisphosphatase. Plant Biotechnology 30(1): 47-56. Lee DS, Kim BK, Kwon SJ, Jin HC, Park OK. 2009. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling. Biochemical and Biophysical Research Communications 379(4): 1038-1042. Li W-X, Oono Y, Zhu J, He X-J, Wu J-M, Iida K, Lu X-Y, Cui X, Jin H, Zhu J-K. 2008. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20(8): 2238-2251. Li YS. 2006. Rice functional genomics study with T-DNA insertion mutants—Characterization and gene expression analysis of a disease susceptible mutant M0023454 and a seed development mutant M0039314. Master''s thesis thesis, National Chung Hsing University Taichung. Liu B, Li J-F, Ao Y, Qu J, Li Z, Su J, Zhang Y, Liu J, Feng D, Qi K. 2012. Lysin Motif–Containing Proteins LYP4 and LYP6 Play Dual Roles in Peptidoglycan and Chitin Perception in Rice Innate Immunity. Plant Cell 24(8): 3406-3419. Liu JG, Zhang Z, Qin QL, Peng RH, Xiong AS, Chen JM, Xu F, Zhu H, Yao QH. 2007. Isolated and characterization of a cDNA encoding ethylene-responsive element binding protein (EREBP)/AP2-type protein, RCBF2, in Oryza sativa L. Biotechnology Letters 29(1): 165-173. Liu L, Zhou Y, Zhou G, Ye R, Zhao L, Li X, Lin Y. 2008. Identification of early senescence-associated genes in rice flag leaves. Plant Molecular Biology 67(1-2): 37-55. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8): 1391-1406. Liu Y, Zhao T-J, Liu J-M, Liu W-Q, Liu Q, Yan Y-B, Zhou H-M. 2006. The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box. FEBS Letters 580(5): 1303-1308. Ma Q-H, Tian B, Li Y-L. 2010. Overexpression of a wheat jasmonate-regulated lectin increases pathogen resistance. Biochimie 92(2): 187-193. Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK. 2002. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419(6905): 399-403. Mang HG, Laluk KA, Parsons EP, Kosma DK, Cooper BR, Park HC, AbuQamar S, Boccongelli C, Miyazaki S, Consiglio F, Chilosi G, Bohnert HJ, Bressan RA, Mengiste T, Jenks MA. 2009. The Arabidopsis RESURRECTION1 gene regulates a novel antagonistic interaction in plant defense to biotrophs and necrotrophs. Plant Physiology 151(1): 290-305. Mishina TE, Zeier J. 2007. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. The Plant Journal 50(3): 500-513. Miura K, Ikeda M, Matsubara A, Song X-J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genetics 42(6): 545-549. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences 104(49): 19613-19618. Nakano T, Suzuki K, Fujimura T, Shinshi H. 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology 140(2): 411-432. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772): 436-439. Nishiuchi T, Suzuki K, Kitajima S, Sato F, Shinshi H. 2002. Wounding activates immediate early transcription of genes for ERFs in tobacco plants. Plant Molecular Biology 49(5): 473-482. Nishiuchi T, Suzuki K, Kitajima S, Sato F, Shinshi H. 2002. Wounding activates immediate early transcription of genes for ERFs in tobacco plants. Plant Molecular Biology 49(5): 473-482. Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK. 2005. Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17(10): 2832-2847. Ohme-Takagi M, Shinshi H. 1995. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7(2): 173-182. Perez-Quintero AL, Neme R, Zapata A, Lopez C. 2010. Plant microRNAs and their role in defense against viruses: a bioinformatics approach. BMC Plant Biology 10(1): 138. Park JM, Park C-J, Lee S-B, Ham B-K, Shin R, Paek K-H. 2001. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2–type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13(5): 1035-1046. Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC. 2009. Networking by small-molecule hormones in plant immunity. Nature Chemical Biology 5(5): 308-316. Pineda A, Zheng SJ, van Loon J, Dicke M. 2012. Rhizobacteria modify plant–aphid interactions: a case of induced systemic susceptibility. Plant Biology 14(s1): 83-90. Preston JC, Hileman LC. 2013. Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Frontiers in Plant Science 4. Qiao Y, Jiang W, Lee J, Park B, Choi MS, Piao R, Woo MO, Roh JH, Han L, Paek NC, Seo HS, Koh HJ. 2010. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit micro 1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytologist 185(1): 258-274. Qin Q-M, Zhang Q, Zhao W-S, Wang Y-Y, Peng Y-L. 2003. Identification of a lectin gene induced in rice in response to Magnaporthe grisea infection. Acta Botanica Sinica - 45(1): 76-81. Rashid M, Guangyuan H, Guangxiao Y, Hussain J, Xu Y. 2012. AP2/ERF Transcription Factor in Rice: Genome-Wide Canvas and Syntenic Relationships between Monocots and Eudicots. Evolutionary Bioinformatics 8: 321-355. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. 2002. Prediction of plant microRNA targets. Cell 110(4): 513-520. Riechmann JL, Meyerowitz EM. 1998. The AP2/EREBP family of plant transcription factors. Biological Chemistry 379(6): 633-646. Robert-Seilaniantz A, Grant M, Jones JD. 2011. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annual Review of Phytopathology 49: 317-343. Robert-Seilaniantz A, MacLean D, Jikumaru Y, Hill L, Yamaguchi S, Kamiya Y, Jones JD. 2011. The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. The Plant Journal 67(2): 218-231. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications 290(3): 998-1009. Sarowar S, Kim YJ, Kim KD, Hwang BK, Ok SH, Shin JS. 2009. Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco. Plant Cell Reports 28(3): 419-427. Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi IR, Omura T, Kikuchi S. 2011. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant and Cell Physiology 52(2): 344-360. Shen M-N. 2008. Rice functional genomics study with T-DNA insertion mutants-Functional analysis of a disease susceptible mutant M0023454. Master’s thesis, National Chung Hsing University Taichung. Simmons CR, Fridlender M, Navarro PA, Yalpani N. 2003. A maize defense-inducible gene is a major facilitator superfamily member related to bacterial multidrug resistance efflux antiporters. Plant Molecular Biology 52(2): 433-446. Sohn KH, Lee SC, Jung HW, Hong JK, Hwang BK. 2006. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Molecular Biology 61(6): 897-915. Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK. 2005. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17(8): 2384-2396. Spoel SH, Dong X. 2012. How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology 12(2): 89-100. Van Loon L. 2007. Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology 119(3): 243-254. Walters D, Heil M. 2007. Costs and trade-offs associated with induced resistance. Physiological and Molecular Plant Pathology 71(1): 3-17. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X. 2007. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Current Biology 17(20): 1784-1790. Wang N, Long T, Yao W, Xiong L, Zhang Q, Wu C. 2013. Mutant Resources for the Functional Analysis of the Rice Genome. Molecular Plant 6(3): 596-604. Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q. 2012. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics 44(8): 950-954. Wang X, Chen J, Yang Y, Zhou J, Qiu Y, Yu C, Cheng Y, Yan C, Chen J. 2013. Characterization of a Novel NBS-LRR Gene Involved in Bacterial Blight Resistance in Rice. Plant Molecular Biology Reporter: 1-8. Washio K. 2001. Identification of Dof proteins with implication in the gibberellin-regulated expression of a peptidase gene following the germination of rice grains. Biochimica et Biophysica Acta - Gene Structure and Expression 1520(1): 54-62. Xiang Y, Song M, Wei Z, Tong J, Zhang L, Xiao L, Ma Z, Wang Y. 2011. A jacalin-related lectin-like gene in wheat is a component of the plant defence system. Journal of Experimental Botany 62(15): 5471-5483. Xie K, Shen J, Hou X, Yao J, Li X, Xiao J, Xiong L. 2012. Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice. Plant Physiology 158(3): 1382-1394. Xu C, Wang Y, Yu Y, Duan J, Liao Z, Xiong G, Meng X, Liu G, Qian Q, Li J. 2012. Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering. Nature Communications 3: 750. Xu Z-S, Xia L-Q, Chen M, Cheng X-G, Zhang R-Y, Li L-C, Zhao Y-X, Lu Y, Ni Z-Y, Liu L. 2007. Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Molecular Biology 65(6): 719-732. Yanagisawa S. 2002. The Dof family of plant transcription factors. Trends in Plant Science 7(12): 555-560. Yi SY, Kim J-H, Joung Y-H, Lee S, Kim W-T, Yu SH, Choi D. 2004. The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiology 136(1): 2862-2874. Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z-X, Kono I, Kurata N, Yano M, Iwata N, Sasaki T. 1998. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proceedings of the National Academy of Sciences 95(4): 1663-1668. Zarei A, Korbes AP, Younessi P, Montiel G, Champion A, Memelink J. 2011. Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis. Plant Molecular Biology 75(4-5): 321-331. Zhang H, Zhang D, Chen J, Yang Y, Huang Z, Huang D, Wang XC, Huang R. 2004. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Molecular Biology 55(6): 825-834. Zhang W, Gao S, Zhou X, Chellappan P, Chen Z, Zhou X, Zhang X, Fromuth N, Coutino G, Coffey M. 2011. Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Molecular Biology 75(1-2): 93-105. Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S. 2005. A maize resistance gene functions against bacterial streak disease in rice. Proceedings of the National Academy of Sciences 102(43): 15383-15388. Zhou YL, Xu MR, Zhao MF, Xie XW, Zhu LH, Fu BY, Li ZK. 2010. Genome-wide gene responses in a transgenic rice line carrying the maize resistance gene Rxo1 to the rice bacterial streak pathogen, Xanthomonas oryzae pv. oryzicola. BMC Genomics 11: 78. Zhu Q, Zhang J, Gao X, Tong J, Xiao L, Li W, Zhang H. 2010. The Arabidopsis AP2/ERF transcription factor RAP2. 6 participates in ABA, salt and osmotic stress responses. Gene 457(1): 1-12. Zipfel C, Rathjen JP. 2008. Plant immunity: AvrPto targets the frontline. Current Biology 18(5): R218-R220. | en_US |
dc.identifier.uri | http://hdl.handle.net/11455/20806 | - |
dc.description.abstract | 本研究自中研院團隊建立的臺灣水稻T-DNA插入性突變體資料庫中篩選出兩種具外表特異性之突變株M0023454和M0111350,希望藉由其特異之外表性狀與基因型,探討水稻於調控抗病以及分蘗之基因表現及功能。 M0023454於前人研究中發現其於營養生長期與生殖生長期轉換期間,出現極似病原菌攻擊產生之嚴重病斑,並於黃熟期逐漸枯萎。T-DNA插入位附近僅發現454-10基因 (LOC_Os04g32620) 有被活化之情形,然而將454-10以ubiquitin大量表現於水稻中,並無發現具有與原突變株相同之外表性狀,是以本研究重新檢視其外表性狀以及基因表現分析。首先擴大分析T-DNA插入位完整BAC clone之基因表現,發現454-10為唯一活化之基因。進一步觀察田間突變株病斑分布情形,發現病斑數量以及分佈與T-DNA插入事件呈正比,而於溫室之突變株卻沒有病斑的形成。另外,由於發現突變株幼苗具葉緣白化之情形,及部分突變株於營養生長期即出現枯萎現象,是以設計暗誘導試驗誘發提早老化,而進一步比較突變株與野生種之差異。發現除外表性狀並無顯著差異外,基因層次上,分別偵測早、中和晚期之枯萎指示基因,結果亦顯示突變株與野生種並無明顯差別,是以排除此現象為老化相關分子調控所造成。綜合以上推斷M0023454確為易感病之突變株,且須暴露於外在生物環境壓力下才會導致病斑形成。將Ubi::454-10轉殖株進行序列比對,以及經由不同資料庫比對及基因表現確認,雖454-10上游492 bp處仍具轉錄活性,但轉殖株之構築並無錯誤。欲更進一步瞭解調控此外表性狀之基因究竟為何,便進行miRNA及RNA micro array的分析。其中一可能與抗病相關之miR1858b,其目標基因RST1之表現與野生種並無明顯區別。而RNA micro array的結果顯示,部分可能具抗病功能之基因於幼苗時期即具顯著之活化,結果亦以RT-PCR做進一步確認,是以推測M0023454之病斑形成可能為病原菌攻擊後產生之過敏反應。另以Tryban blue,NBT以及DAB分別進行死細胞及過氧化物之染色,均發現顯著呈色於病斑形成處,證實該病斑形成處確有死細胞與過氧化物堆積。 M0111350為一矮化及高分蘗之突變株,且具有葉長較短及葉寬較窄之現象。農藝性狀調查結果顯示,進入生殖生長期後,該突變株仍有新分蘗產生;然而其穗長、單株稔實種子數、稔實率以及單株穀粒重均顯著低於野生種。分析其T-DNA插入位附近基因表現,發現350-3具活化之情形,然而建立構築定序後發現該基因306 bp處產生突變並造成提早終止。將插入位序列送至miRNA資料庫 (miRBase) 發現插入位上游583及207 bp處各具有osa-miR156,進行stem-loop RT-PCR分析表現量發現有活化之情形,且其主要目標基因Squamosa promoter binding like protein (SPL) 14及16均受到抑制,與前人研究成果相符合。 | zh_TW |
dc.description.abstract | M0023454 and M0111350 are T-DNA mutants constructed by TRIM database. Genomic functionalizations of these phenotypically specific mutants were expected to shed lights on disease resistance and tillering regulation in rice. M0023454 was previously demonstrated pathogen susceptible and lesion formation prone in the transition from vegetative growth stage to reproductive stage. The flanking gene 454-10 was activated in mutant, however, the Ubi::454-10 transgenic line did not phenocopy that of M0023454. To reveal its exact mechanism, all predicted genes in T-DNA inserted BAC clone were analyzed, 454-10 was the only activated still. The further observation on phenotype assured the positive relation of lesion formation and T-DNA insertion. The potential of early-senescence was also excluded based on its phenotypic reflection and molecular level comparing to TNG67. Sequencing of Ubi:454-10 proved transgene identical to database prediction. Genetically characterization showed 454-10 is transcriptionally active from at least 492 bp upper-stream. The miRNA and total RNA micro array analysis revealed several potential defensive related genes regulated early in its seedlings. Histochemical staining with trypan blue for dead cells and NBT and DAB for ROS, indicated the defense system regulated lesion formation in M0023454. M0111350, the dwarf and unstoppable tillering T-DNA mutants was characterized as shorter and narrower leaves, with extremely lower yield production. Molecular evidence suggested a pre-mature termination of the activated 350-3 gene at 306 bp. On the other hand, the flanking non-coding osa-miR156 were activated and led to both SPL14 and SPL16 knockdown in M0111350. | en_US |
dc.description.tableofcontents | 中文摘要 i Abstract ii List of Tables and Figures vi List of Supplements vii Abbreviations viii INTRODUCTION 1 REVIEW OF RELATED LITERATURE 2 Rice genomic study 2 Plant immunity 3 1. Local signal triggered immunity – PTI and ETI 3 2. Broad-spectrum systemic immunity – SAR, ISR and phytohormones 4 The AP2/EREBP transcription factor superfamily 6 Squamosa promoter binding protein like proteins (SPL) 7 MATERIAL AND METHODS 9 T-DNA mutants 9 Phenotypic characterization of mutant rice 9 Bioinformatics analysis 9 Molecular laboratory protocols 10 1. Genomic DNA extraction 10 2. Plasmid rescue 11 3. T-DNA insertion locus confirmation 12 4. RNA expression of total RNA 13 5. Cloning of target gene 15 6. Micro-RNA expression analysis by stem-loop pulsed RT-PCR 16 7. Micro-array analysis 17 8. Histochemistry 17 RESULTS 19 Pathogen susceptible T-DNA mutant – M0023454 19 1. Flanking genes of T-DNA insertion site of M0023454 19 2. All genes expression analysis in BAC clone OSJNBa0039C07 20 3. Early phenotypic aberration in M0023454 21 4. Genetic characterization of 454-10 22 5. Transcriptomic analysis in M0023454 23 6. Lesions characterization in M0023454 25 Dwarf and high tillering T-DNA mutant – M0111350 25 1. T-DNA insertion confirmation of M0111350 25 2. Phenotype characterization of M0111350 26 3. Flanking gene expression level analysis in M0111350 27 4. Transgenic approach of predicted flanking gene 350-3 28 5. Osa-miR156 involved regulation in M0111350 28 DISCUSSION 30 Pathogen susceptible T-DNA mutant – M0023454 30 Phenotype characterization 30 454-10 characterization and functionalization in M0023454 31 1. 454-10, the transcription factor dominantly involved in M0023454 31 2. Pathogenesis-related and ERF domain containing transcription factor 32 Transcriptomic analysis of M0023454 34 454-24, a new hope for M0023454 phenotype recapitulation? 39 Dwarf and high-tillering T-DNA mutant – M0111350 40 The nonsense mutation of activated 350-3 gene 40 The osa-miR156-SPL effect in M0111350 40 REFERENCES 43 | zh_TW |
dc.language.iso | en_US | en_US |
dc.publisher | 分子生物學研究所 | zh_TW |
dc.relation.uri | http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2708201310482000 | en_US |
dc.subject | T-DNA | zh_TW |
dc.subject | Rice | en_US |
dc.subject | 突變 | zh_TW |
dc.subject | 抗病 | zh_TW |
dc.subject | 感病 | zh_TW |
dc.subject | 高分糵 | zh_TW |
dc.subject | 矮株 | zh_TW |
dc.subject | T-DNA | en_US |
dc.subject | mutant | en_US |
dc.subject | disease resistance | en_US |
dc.subject | disease susceptible | en_US |
dc.subject | high tillering | en_US |
dc.subject | dwarf | en_US |
dc.title | 水稻抗病能力異常 T-DNA 突變株 M0023454及高分蘗 M0111350 突變株之基因功能探討 | zh_TW |
dc.title | Rice functional genomics analysis of T-DNA insertion mutants, disease susceptible M0023454 and high tillering M0111350 | en_US |
dc.type | Thesis and Dissertation | zh_TW |
item.openairetype | Thesis and Dissertation | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en_US | - |
item.grantfulltext | restricted | - |
item.fulltext | with fulltext | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | 分子生物學研究所 |
Files in This Item:
File | Size | Format | Existing users please Login |
---|---|---|---|
nchu-102-7099055012-1.pdf | 7.2 MB | Adobe PDF | This file is only available in the university internal network |
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.