Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/20836
標題: 蛋白質體技術分析SARS冠狀病毒類木瓜蛋白酶影響第一型干擾素訊息途徑與誘導乙型轉化生長因子表現之研究
Study on the Role of SARS-CoV Papain-Like Protease in Type I Interferon Signaling Pathway and Transforming Growth Factor-Beta1 Induction Using Proteomic Analysis
作者: 李詩雯
Li, Shih-wen
關鍵字: 類木瓜蛋白酶干擾素;SARS;乙形轉化生長因子;蛋白質體;PLpro;interferon;TGF-beta;proteomics
出版社: 分子生物學研究所
引用: [1] Tsang KW, Lam WK. Management of severe acute respiratory syndrome: the Hong Kong University experience. American journal of Respiratory and Critical Care Medicine. 2003;168:417-24. [2] Hsueh PR, Chen PJ, Hsiao CH, Yeh SH, Cheng WC, Wang JL, Chiang BL, Chang SC, Chang FY, Wong WW, Kao CL, Yang PC. Patient data, early SARS epidemic, Taiwan. Emerging Infectious Diseases. 2004;10:489-93. [3] Notice of Retraction: "Autonomous histopathological regression of primary tumours associated with specific immune responses to cancer antigens" (J Pathol 2003; 200: 383-395). J Pathol. 2006;210:383. [4] Nicholls JM, Poon LL, Lee KC, Ng WF, Lai ST, Leung CY, Chu CM, Hui PK, Mak KL, Lim W, Yan KW, Chan KH, Tsang NC, Guan Y, Yuen KY, Peiris JS. Lung pathology of fatal severe acute respiratory syndrome. Lancet. 2003;361:1773-8. [5] He L, Ding Y, Zhang Q, Che X, He Y, Shen H, Wang H, Li Z, Zhao L, Geng J, Deng Y, Yang L, Li J, Cai J, Qiu L, Wen K, Xu X, Jiang S. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS. J Pathol. 2006;210:288-97. [6] Huang KJ, Su IJ, Theron M, Wu YC, Lai SK, Liu CC, Lei HY. An interferon-gamma-related cytokine storm in SARS patients. J Med Virol. 2005;75:185-94. [7] Yan H, Xiao G, Zhang J, Hu Y, Yuan F, Cole DK, Zheng C, Gao GF. SARS coronavirus induces apoptosis in Vero E6 cells. J Med Virol. 2004;73:323-31. [8] Wang WK, Chen SY, Liu IJ, Kao CL, Chen HL, Chiang BL, Wang JT, Sheng WH, Hsueh PR, Yang CF, Yang PC, Chang SC. Temporal relationship of viral load, ribavirin, interleukin (IL)-6, IL-8, and clinical progression in patients with severe acute respiratory syndrome. Clin Infect Dis. 2004;39:1071-5. [9] Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Peñaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Günther S, Osterhaus AD, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300:1394-9. [10] Ziebuhr J. Molecular biology of severe acute respiratory syndrome coronavirus. Curr Opin Microbiol. 2004;7:412-9. [11] Sulea T, Lindner HA, Purisima EO, Menard R. Deubiquitination, a new function of the severe acute respiratory syndrome coronavirus papain-like protease? J Virol. 2005;79:4550-1. [12] Ratia K, Saikatendu KS, Santarsiero BD, Barretto N, Baker SC, Stevens RC, Mesecar AD. Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proceedings of the National Academy of Sciences of the United States of America. 2006;103:5717-22. [13] Barretto N, Jukneliene D, Ratia K, Chen Z, Mesecar AD, Baker SC. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J Virol. 2005;79:15189-98. [14] Lindner HA, Fotouhi-Ardakani N, Lytvyn V, Lachance P, Sulea T, Menard R. The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J Virol. 2005;79:15199-208. [15] Spiegel M, Pichlmair A, Martinez-Sobrido L, Cros J, Garcia-Sastre A, Haller O, et al. Inhibition of Beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J Virol. 2005;79:2079-86. [16] Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009;83:6689-705. [17] Liu FY, Li XZ, Peng YM, Liu H, Liu YH. Arkadia-Smad7-mediated positive regulation of TGF-beta signaling in a rat model of tubulointerstitial fibrosis. American Journal of Nephrology. 2007;27:176-83. [18] Weiss CH, Budinger GR, Mutlu GM, Jain M. Proteasomal regulation of pulmonary fibrosis. Proceedings of the American Thoracic Society. 2010;7:77-83. [19] Booth CM, Matukas LM, Tomlinson GA, Rachlis AR, Rose DB, Dwosh HA, et al. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA : the journal of the American Medical Association. 2003;289:2801-9. [20] Peiris JS. Severe Acute Respiratory Syndrome (SARS). Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology. 2003;28:245-7. [21] Rickerts V, Wolf T, Rottmann C, Preiser W, Drosten C, Jakobi V, Leong HN, Brodt HR. Clinical presentation and management of the severe acute respiratory syndrome (SARS). Dtsch Med Wochenschr. 2003;128:1109-14. [22] Lee N, Sung JJ. Nosocomial Transmission of SARS. Current Infectious Disease Reports. 2003;5:473-6. [23] Tsang KW, Ho PL, Ooi GC, Yee WK, Wang T, Chan-Yeung M, Lam WK, Seto WH, Yam LY, Cheung TM, Wong PC, Lam B, Ip MS, Chan J, Yuen KY, Lai KN. A cluster of cases of severe acute respiratory syndrome in Hong Kong. The New England Journal of Medicine. 2003;348:1977-85. [24] Lang Z, Zhang L, Zhang S, Meng X, Li J, Song C, Sun L, Zhou Y. Pathological study on severe acute respiratory syndrome. Chin Med J (Engl). 2003;116:976-80. [25] Thiel V, Ivanov KA, Putics A, Hertzig T, Schelle B, Bayer S, Weissbrich B, Snijder EJ, Rabenau H, Doerr HW, Gorbalenya AE, Ziebuhr J. Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol. 2003;84:2305-15. [26] Harcourt BH, Jukneliene D, Kanjanahaluethai A, Bechill J, Severson KM, Smith CM, Rota PA, Baker SC. Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J Virol. 2004;78:13600-12. [27] Han YS, Chang GG, Juo CG, Lee HJ, Yeh SH, Hsu JT, Chen X. Papain-like protease 2 (PLP2) from severe acute respiratory syndrome coronavirus (SARS-CoV): expression, purification, characterization, and inhibition. Biochemistry. 2005;44:10349-59. [28] Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiological reviews. 2002;82:373-428. [29] Ott DE, Coren LV, Sowder RC, 2nd, Adams J, Nagashima K, Schubert U. Equine infectious anemia virus and the ubiquitin-proteasome system. J Virol. 2002;76:3038-44. [30] Gao G, Luo H. The ubiquitin-proteasome pathway in viral infections. Canadian journal of physiology and pharmacology. 2006;84:5-14. [31] Shtrichman R, Samuel CE. The role of gamma interferon in antimicrobial immunity. Curr Opin Microbiol. 2001;4:251-9. [32] Qiao H, Sakamoto T, Hinton DR, Gopalakrishna R, Ishibashi T, Ryan SJ, Inomata H. Interferon beta affects retinal pigment epithelial cell proliferation via protein kinase C pathways. Ophthalmologica Journal International d''ophtalmologie International Journal of Ophthalmology Zeitschrift fur Augenheilkunde. 2001;215:401-7. [33] Grander D, Sangfelt O, Erickson S. How does interferon exert its cell growth inhibitory effect? European Journal of Haematology. 1997;59:129-35. [34] Siegal FP, Fitzgerald-Bocarsly P, Holland BK, Shodell M. Interferon-alpha generation and immune reconstitution during antiretroviral therapy for human immunodeficiency virus infection. AIDS. 2001;15:1603-12. [35] Allen G, Diaz MO. Nomenclature of the human interferon proteins. Journal of interferon research. 1994;14:223-6. [36] Dondi E, Pattyn E, Lutfalla G, Van Ostade X, Uzé G, Pellegrini S, Tavernier J. Down-modulation of type 1 interferon responses by receptor cross-competition for a shared Jak kinase. The Journal of Biological Chemistry. 2001;276:47004-12. [37] Aaronson DS, Horvath CM. A road map for those who don''t know JAK-STAT. Science. 2002;296:1653-5. [38] Heim MH. The Jak-STAT pathway: cytokine signalling from the receptor to the nucleus. Journal of Receptor and Signal Transduction Research. 1999;19:75-120. [39] Pichini S, Pacifici R, Altieri I, Palmeri A, Pellegrini M, Zuccaro P. Determination of lorazepam in plasma and urine as trimethylsilyl derivative using gas chromatography-tandem mass spectrometry. Journal of Chromatography B, Biomedical Sciences and Applications. 1999;732:509-14. [40] Der SD, Zhou A, Williams BR, Silverman RH. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:15623-8. [41] Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev. 2001;14:778-809, table of contents. [42] Biron CA. Interferons alpha and beta as immune regulators--a new look. Immunity. 2001;14:661-4. [43] de Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM, Silverman RH, Williams BR. Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol. 2001;69:912-20. [44] Liu M, Li XL, Hassel BA. Proteasomes modulate conjugation to the ubiquitin-like protein, ISG15. The Journal of Biological Chemistry. 2003;278:1594-602. [45] Kim KI, Zhang DE. ISG15, not just another ubiquitin-like protein. Biochemical and Biophysical Research Communications. 2003;307:431-4. [46] Ritchie KJ, Hahn CS, Kim KI, Yan M, Rosario D, Li L, de la Torre JC, Zhang DE. Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nat Med. 2004;10:1374-8. [47] Liu S, Lv J, Han L, Ichikawa T, Wang W, Li S, Wang XL, Tang D, Cui T. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells. Biochemical and Biophysical Research Communications. 2012;420:78-83. [48] Parvatiyar K, Harhaj EW. Regulation of inflammatory and antiviral signaling by A20. Microbes and infection / Institut Pasteur. 2011;13:209-15. [49] Yuan W, Krug RM. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J. 2001;20:362-71. [50] La Rocca SA, Herbert RJ, Crooke H, Drew TW, Wileman TE, Powell PP. Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro. J Virol. 2005;79:7239-47. [51] Gotoh B, Komatsu T, Takeuchi K, Yokoo J. Paramyxovirus strategies for evading the interferon response. Reviews in Medical Virology. 2002;12:337-57. [52] Cheung CY, Poon LL, Ng IH, Luk W, Sia SF, Wu MH, Chan KH, Yuen KY, Gordon S, Guan Y, Peiris JS. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol. 2005;79:7819-26. [53] Hu X, Song F, Zheng Z. Molecular cloning and expression analysis of rice OsTVLP1, encoding a protein with similarity to TGF-beta receptor interacting proteins and vacuolar assembly Vam6p/Vps39p proteins. DNA Seq. 2006;17:152-8. [54] Massague J, Chen YG. Controlling TGF-beta signaling. Genes & development. 2000;14:627-44. [55] Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. The Journal of biological chemistry. 1983;258:7155-60. [56] Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annual review of immunology. 1998;16:137-61. [57] Pang C, Gu DL. Some problems about detecting the suspected cases of SARS according to the local skin temperatures on face. Space Med Med Eng (Beijing). 2003;16:231-4. [58] Baas T, Taubenberger JK, Chong PY, Chui P, Katze MG. SARS-CoV virus-host interactions and comparative etiologies of acute respiratory distress syndrome as determined by transcriptional and cytokine profiling of formalin-fixed paraffin-embedded tissues. J Interferon Cytokine Res. 2006;26:309-17. [59] Ashcroft GS. Bidirectional regulation of macrophage function by TGF-beta. Microbes and infection / Institut Pasteur. 1999;1:1275-82. [60] Stramer BM, Austin JS, Roberts AB, Fini ME. Selective reduction of fibrotic markers in repairing corneas of mice deficient in Smad3. Journal of Cellular Physiology. 2005;203:226-32. [61] Rube CE, Uthe D, Schmid KW, Richter KD, Wessel J, Schuck A, et al. Dose-dependent induction of transforming growth factor beta (TGF-beta) in the lung tissue of fibrosis-prone mice after thoracic irradiation. International Journal of Radiation Oncology, Biology, Physics. 2000;47:1033-42. [62] Lin X, Chen Y, Meng A, Feng X. Termination of TGF-beta superfamily signaling through SMAD dephosphorylation--a functional genomic view. Journal of genetics and genomics. Yi chuan xue bao. 2007;34:1-9. [63] Ray S, Broor SL, Vaishnav Y, Sarkar C, Girish R, Dar L, Seth P, Broor S. Transforming growth factor beta in hepatitis C virus infection: in vivo and in vitro findings. Journal of Gastroenterology and Hepatology. 2003;18:393-403. [64] Zhao X, Nicholls JM, Chen YG. Severe acute respiratory syndrome-associated coronavirus nucleocapsid protein interacts with Smad3 and modulates transforming growth factor-beta signaling. The Journal of Biological Chemistry. 2008;283:3272-80. [65] Zhang L, Zhou F, Drabsch Y, Gao R, Snaar-Jagalska BE, Mickanin C, Huang H, Sheppard KA, Porter JA, Lu CX, Ten Dijke P. USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-beta type I receptor. Nature Cell Biology. 2012. [66] Aggarwal K, Massague J. Ubiquitin removal in the TGF-beta pathway. Nature Cell Biology. 2012;14:656-7. [67] Eichhorn PJ, Rodón L, Gonzàlez-Juncà A, Dirac A, Gili M, Martínez-Sáez E, Aura C, Barba I, Peg V, Prat A, Cuartas I, Jimenez J, García-Dorado D, Sahuquillo J, Bernards R, Baselga J, Seoane J. USP15 stabilizes TGF-beta receptor I and promotes oncogenesis through the activation of TGF-beta signaling in glioblastoma. Nat Med. 2012;18:429-35. [68] Lai CC, Jou MJ, Huang SY, Li SW, Wan L, Tsai FJ, Lin CW. Proteomic analysis of up-regulated proteins in human promonocyte cells expressing severe acute respiratory syndrome coronavirus 3C-like protease. Proteomics. 2007;7:1446-60. [69] Li SW, Lai CC, Ping JF, Tsai FJ, Wan L, Lin YJ, Kung SH, Lin CW. Severe acute respiratory syndrome coronavirus papain-like protease suppressed alpha interferon-induced responses through downregulation of extracellular signal-regulated kinase 1-mediated signalling pathways. J Gen Virol. 2011;92:1127-40. [70] Vasir B, Reitz P, Xu G, Sharma A, Bonner-Weir S, Weir GC. Effects of diabetes and hypoxia on gene markers of angiogenesis (HGF, cMET, uPA and uPAR, TGF-alpha, TGF-beta, bFGF and Vimentin) in cultured and transplanted rat islets. Diabetologia. 2000;43:763-72. [71] Zhou R, Skalli O. TGF-alpha differentially regulates GFAP, vimentin, and nestin gene expression in U-373 MG glioblastoma cells: correlation with cell shape and motility. Experimental Cell Research. 2000;254:269-78. [72] Rogel MR, Soni PN, Troken JR, Sitikov A, Trejo HE, Ridge KM. Vimentin is sufficient and required for wound repair and remodeling in alveolar epithelial cells. FASEB journal. 2011;25:3873-83. [73] Chen HF, Xie LD, Xu CS. The signal transduction pathways of heat shock protein 27 phosphorylation in vascular smooth muscle cells. Molecular and Cellular Biochemistry. 2010;333:49-56. [74] Tong XK, Hamel E. Transforming growth factor-beta 1 impairs endothelin-1-mediated contraction of brain vessels by inducing mitogen-activated protein (MAP) kinase phosphatase-1 and inhibiting p38 MAP kinase. Molecular Pharmacology. 2007;72:1476-83. [75] Drugeon G, Jupin I. Stability in vitro of the 69K movement protein of Turnip yellow mosaic virus is regulated by the ubiquitin-mediated proteasome pathway. J Gen Virol. 2002;83:3187-97. [76] Devaraj SG, Wang N, Chen Z, Chen Z, Tseng M, Barretto N, Lin R, Peters CJ, Tseng CT, Baker SC, Li K. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. The Journal of Biological Chemistry. 2007;282:32208-21. [77] Laine A, Ronai Z. Ubiquitin chains in the ladder of MAPK signaling. Sci STKE. 2005;2005:re5. [78] Lu Z, Xu S, Joazeiro C, Cobb MH, Hunter T. The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol Cell. 2002;9:945-56. [79] Wang JY, Lee CH, Cheng SL, Chang HT, Hsu YL, Wang HC, Chu SH. Comparison of the clinical manifestations of severe acute respiratory syndrome and Mycoplasma pneumoniae pneumonia. J Formos Med Assoc. 2004;103:894-9. [80] Lombardi A, Cantini G, Piscitelli E, Gelmini S, Francalanci M, Mello T, Ceni E, Varano G, Forti G, Rotondi M, Galli A, Serio M, Luconi M. A new mechanism involving ERK contributes to rosiglitazone inhibition of tumor necrosis factor-alpha and interferon-gamma inflammatory effects in human endothelial cells. Arterioscler Thromb Vasc Biol. 2008;28:718-24. [81] Matsumoto S, Hara T, Hori T, Mitsuyama K, Nagaoka M, Tomiyasu N, Suzuki A, Sata M. Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines in lamina propria mononuclear cells. Clin Exp Immunol. 2005;140:417-26. [82] Chang YJ, Liu CY, Chiang BL, Chao YC, Chen CC. Induction of IL-8 release in lung cells via activator protein-1 by recombinant baculovirus displaying severe acute respiratory syndrome-coronavirus spike proteins: identification of two functional regions. J Immunol. 2004;173:7602-14. [83] Law AH, Lee DC, Cheung BK, Yim HC, Lau AS. Role for nonstructural protein 1 of severe acute respiratory syndrome coronavirus in chemokine dysregulation. J Virol. 2007;81:416-22. [84] Willis BC, Borok Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. American Journal of Physiology Lung Cellular and Molecular Physiology. 2007;293:L525-34. [85] Iwano M. EMT and TGF-beta in renal fibrosis. Front Biosci (Schol Ed). 2010;2:229-38. [86] Georgiadis A, Tschernutter M, Bainbridge JW, Balaggan KS, Mowat F, West EL, Munro PM, Thrasher AJ, Matter K, Balda MS, Ali RR. The tight junction associated signalling proteins ZO-1 and ZONAB regulate retinal pigment epithelium homeostasis in mice. PLoS One. 2010;5:e15730. [87] Xu C, Chen ZX, Liu WY, Wang YX, Xiong ZX. A series of observation on the expression of TGF-beta1 in the lung of nitrofen-induced congenital diaphragmatic hernia rat model. Zhonghua Wai Ke Za Zhi [Chinese Journal of Surgery]. 2009;47:301-4. [88] Boyan BD, Schwartz Z. 1,25-Dihydroxy vitamin D3 is an autocrine regulator of extracellular matrix turnover and growth factor release via ERp60-activated matrix vesicle matrix metalloproteinases. Cells Tissues Organs. 2009;189:70-4. [89] Escobar-Garcia DM, Del Razo LM, Sanchez-Pena LC, Mandeville PB, Lopez-Campos C, Escudero-Lourdes C. Association of glutathione S-transferase Omega 1-1 polymorphisms (A140D and E208K) with the expression of interleukin-8 (IL-8), transforming growth factor beta (TGF-beta), and apoptotic protease-activating factor 1 (Apaf-1) in humans chronically exposed to arsenic in drinking water. Archives of Toxicology. 2012. [90] Pan X, Hussain FN, Iqbal J, Feuerman MH, Hussain MM. Inhibiting proteasomal degradation of microsomal triglyceride transfer protein prevents CCl4-induced steatosis. J Biol Chem. 2007;282:17078-89. [91] Hofer EL, La Russa V, Honegger AE, Bullorsky EO, Bordenave RH, Chasseing NA. Alteration on the expression of IL-1, PDGF, TGF-beta, EGF, and FGF receptors and c-Fos and c-Myc proteins in bone marrow mesenchymal stroma cells from advanced untreated lung and breast cancer patients. Stem Cells and Development. 2005;14:587-94. [92] Fukasawa H, Yamamoto T, Togawa A, Ohashi N, Fujigaki Y, Oda T, Uchida C, Kitagawa K, Hattori T, Suzuki S, Kitagawa M, Hishida A. Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. Proceedings of the National Academy of Sciences of the United States of America. 2004;101:8687-92. [93] Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA Jr, Wrana JL, Falb D. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell. 1997;89:1165-73. [94] Soond SM, Chantry A. How ubiquitination regulates the TGF-beta signalling pathway: new insights and new players: new isoforms of ubiquitin-activating enzymes in the E1-E3 families join the game. BioEssays. 2011;33:749-58. [95] Ellenrieder V, Hendler SF, Boeck W, Seufferlein T, Menke A, Ruhland C, Adler G, Gress TM. Transforming growth factor beta1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Research. 2001;61:4222-8. [96] Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 2000;6:1365-75. [97] Li F, Ruan H, Fan C, Zeng B, Wang C, Wang X. Efficient inhibition of the formation of joint adhesions by ERK2 small interfering RNAs. Biochemical and Biophysical Research Communications. 2010;391:795-9. [98] Li F, Zeng B, Chai Y, Cai P, Fan C, Cheng T. The linker region of Smad2 mediates TGF-beta-dependent ERK2-induced collagen synthesis. Biochemical and Biophysical Research Communications. 2009;386:289-93.
摘要: 
嚴重急性呼吸道症候群冠狀病毒(SARS Coronavirus,SARS-CoV)之類木瓜蛋白酶(PLpro)具有辨識LNGG序列之去泛素化(de-ubiquitining)的酵素活性,已被證實會藉由抑制干擾素調控因子3與NF-κB的活化,使抗病毒機轉受到抑制。本研究利用蛋白質體技術探討PLpro經第一型干擾素處理對人類前單核球細胞之訊息作用、細胞激素表現與蛋白質體變化之分析。PLpro可以抑制IFN調控的啟動子ISRE、AP-1與下游基因PKR、2’-5’-OAS、IL-6和IL-8活化,經二維電泳、質譜儀分析、西方墨點法與即時定量聚合酶連鎖反應驗證發現,PLpro可使ERK-1表現下調,並可透過促使ubiquitin-conjugating enzyme E2-25K及proteasome subunit alpha type 5的表現量上升而使得細胞ubiquitin-proteasome途徑活化。在蛋白酶體和ERK1/2抑制劑處理下,發現PLpro可增加ubiquitin-proteasome途徑以增加ERK1泛素化並降解,而IFN調控蛋白STAT1和cJun則受ERK1/2活化調控。此外,PLpro可以明顯的增加TGF-β1之mRNA與蛋白質產率。經二維電泳、質譜儀分析、西方墨點法與即時定量聚合酶連鎖反應驗證發現,PLpro可促使heat shock protein 27、protein disulfide-isomerase A3 precursor、vimentin、retinal dehydrogenase 2、glial fibrillary acidic protein、glutathione transferase Ω-1等TGF-β1相關蛋白與基因表現上調。在ERK1/2與蛋白酶抑制劑作用下,發現確實可以調控PLpro上調TGF-β1和vimentin的表現量。進一步,PLpro上調之HSP27與p38 MAPK及ERK1/2活化之訊息途徑有關聯,因此以p38 MAPK及ERK1/2抑制劑作用後可使PLpro誘導之TGF-β1、vimentin與第一型膠原蛋白(type I collagen)表現量下降。根據以上結果,證實了SARS-PLpro可透過上調ubiquitin-proteasome系統表現量與活化p38 MAPK及ERK1/2的訊息途徑進而促使TGF-β1表現,並藉著上調ubiquitin-proteasome系統表現量與下調ERK1表現量進而抑制由第一型干擾素活化之ERK1與STAT-1間的交互作用。

SARS coronavirus (SARS-CoV) papain-like protease (PLpro) recognizes a consensus motif LXGG as consensus cleavage sequence of cellular deubiquitinating enzymes and demonstrates inactivation of IRF3 and NF-κB, reduction of interferon (IFN) induction and suppression of type I IFN signaling pathway. This study investigates type I IFN antagonist mechanism, cytokine expression and proteomic change induced by PLpro in human promonocyte cells using proteomic analysis. PLpro significantly inhibited IFN-mediated promoter (ISRE, AP-1) and genes (PKR, 2’-5’-OAS, IL-6 and IL-8). 2-D electrophoresis, mass spectrometry, Western blotting and quantitative real-time PCR assays indicated PLpro decreased ERK1 expression and activated the ubiquitin proteasome pathway via up-regulation of ubiquitin-conjugating enzyme E2-25k and proteasome subunit alpha type 5. In addition, proteasome inhibitor and ERK1/2 inhibitor significantly reduced ERK1 expression and regulated STAT1 and c-Jun phosphorylation levels via activation of ERK1/2. Moreover, PLpro strongly increased the mRNA and protein expression of TGF-β1. 2DE/MS, Western blotting, ELISA and quantitative real-time PCR assays indicated PLpro up-regulating many TGF-β1-associated genes, including heat-shock protein 27, protein disulfide-isomerase A3 precursor, vimentin, retinal dehydrogenase 2, glial fibrillary acidic protein, and glutathione transferase Ω-1. ERK1/2 inhibitor and proteasome inhibitor significantly regulated the expression of TGF-β1 and vimentin in PLpro-expressing cells. Furthermore, PLpro up-regulated heat shock protein 27, linking with the activation of p38 MAPK and ERK1/2 signaling pathways. The treatment with p38 MAPK and ERK1/2 inhibitors significantly reduced PLpro-induced expression of TGF-β1, vimentin and type I collagen. Results demonstrated SARS PLpro promotes TGF-β1 expression through up-regulating ubiquitin proteasomal system and activation of p38 MAPK and ERK1/2 signaling pathway, and down-regulates ERK1 expression thus inhibiting the interaction between type I IFN activation of ERK1 and STAT1 via up-regulating of ubiquitin-proteasomal system.
URI: http://hdl.handle.net/11455/20836
其他識別: U0005-3107201220363900
Appears in Collections:分子生物學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.