Please use this identifier to cite or link to this item:
標題: 次波長結構光碟片對光封存效應之研究
Study of Light Trapping Effect for Subwavelength-Structured Optical Disc
作者: 謝尚融
關鍵字: subwavelength structure;次波長結構;antireflection;amorphous silicon;thin film;optical disc;抗反射;非晶矽;薄膜;光碟片
出版社: 機械工程學系所
引用: 1.黃建福, “表面次微米結構增加矽薄膜太陽能電池的光捕捉效率”, 國立中央大學光電工程與工程學系研究所(2007) 2.李正中, “薄膜光學與鍍膜技術”, 藝軒圖書出版社(2006) 3.K. N. Chopra, et al. “Triple-layer broad band antireflection coatings using homogeneously mixed dielectric coatings”, Thin Solid Films 55(1), 49-53(1978) 4.林志雄, “利用反應濺鍍法於塑膠基板上製作抗反射膜之研究”, 國立中央大學光電工程與工程學系研究所(2008) 5.U. Schulz, et al. “Antireflection coating design for plastic optics”, Applied Optics 41(16), 3107-3110(2002) 6.J. Weber, et al. “Deposition of broadband antireflection coatings on plastic substrates by evaporation and reactive pulse magnetron sputtering”, Proceedings of SPIE - The International Society for Optical Engineering 5963, 596327(2005) 7.H. Ishikawa et al. “Antireflection film and manufacturing method thereof”, U.S. patent 6284382B1(2001) 8.C. I. Bright, et al. “Method of making antireflective coatings”, U.S. patent 5783049(1998) 9.黃洐春 等著, “奈米光柵之理論與應用”, 機械工業雜誌 257, 156-162(2004) 10.M. G. Moharam, et al. “Diffraction analysis of dielectric surface-relief gratings”, Journal of the Optical Society of America 72(10), 1385-1392(1982) 11.A. Gombert, et al. “Subwavelength-structured antireflective surfaces on glass”, Thin Solid Films 351(1-2), 73-78(1999) 12.A. Gombert, et al. “Antireflective transparent covers for solar devices”, Solar Energy 68(4), 357-360(2000) 13.Y. Kanamori, et al. “Broad band antireflection subwavelength gratings for polymethyl methacrylate fabricated with molding technique”, Optical Review 9(5), 183-185(2002) 14.C. H. Sun, et al. “Templated fabrication of large area subwavelength antireflection gratings on silicon”, Applied Physics Letters 91(23), 231105(2007) 15.J. Nelson, “The physics of solar cells”, Imperial College Press(2003) 16.N. N. Feng, et al. “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells”, IEEE Transactions on Electron Devices 54(8), 1926-1933(2007) 17.A. M. Green, et al. “Light trapping properties of pyramidally textured surfaces”, Conference Record of the IEEE Photovoltaic Specialists Conference, 912-917(1987) 18.T. Machida, et al. “Efficiency improvement in polycrystalline silicon solar cell with grooved surface”, Conference Record of the IEEE Photovoltaic Specialists Conference (2), 1033-1034(1992) 19.S. H. Zaida, et al. “Characterization of random reactive ion etched-textured silicon solar cells”, IEEE Transactions on Electron Devices 48(6), 1200-1206(2001) 20.陽琬琳, “以奈米壓印技術製作次波長光柵”, 國立交通大學光電工程研究所(2007) 21.C. Elsele, et al. “Periodic light coupler gratings in amorphous thin film solar cells”, Journal of Applied Physics 89(12), 7722-7726(2001) 22.A. W. Smith, et al. “Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells”, Solar Energy Materials and Solar Cells 29(1), 37-49(1993) 23.T. Yaqi, et al. “Ray trace simulation of light trapping in silicon solar”, Solar Energy Materials and Solar Cells 90(16), 2647-2656(2006) 24.M. Kambe, et al. “Improvement of light trapping effect on microcrystalline silicon solar cells by using high haze transparent conductive oxide films”, Proceddings of the 3rd World Conference on Photovoltaic Energy Conversion, v B, Proceddings of the 3rd World Conference on Photovoltaic Energy Conversion, 1812-1815(2003) 25.A. A. Abouelsaood, et al. “Shape and size dependence of the antireflective and light-trapping action of periodic grooves”, progress in photovoltaics: research and application, 513-526(2002) 26.H. Sai, et al. “Light trapping effect of submicron surface textures in crystalline Si solar cells”, progress in photovoltaics: research and application, 415-423(2007) 27.S. H. Zaida, et al. “Absorption in thin Si films with randomly formed subwavelength structures”, Conference Record of the 31st IEEE Photovoltaic Specialists Conference, 1145-1148(2005) 28.E. Hecht, “Optics”, Pearson Education(2002) 29.H. P. Herzig, ”Micro-optics:elements、systems and applications”, Taylor & Francis(1997) 30.C. C. Tuck,” Effective Medium Theory: Principles and Applications”, Oxford University Press(1999) 31.M. G. Moharam, et al. “Rigorous coupled-wave analysis of planar-grating diffraction”, Journal of the Optical Society of America 71(7), 811-818(1981) 32.J. D. Rancourt, “Optical thin films:user handbook”, SPIE Optical Engineering Press(1996) 33.C. B. Shiou, “Antireflective coating for ITO film deposition on glass substrate”, Mat. Sci.(10), 491-495 34.陳光華 等箸, ”奈米薄膜技術與應用”, 五南出版社(2005) 35.M. Ohring, “Materials science of thin films”, Academic Press(1992)
藉由向量繞射理論之模擬,分析次波長結構表面對應於不同責務週期與深度對抗反射之影響外,並同時也探討當次波長結構應用於非晶矽薄膜時對於反射減少之趨勢。實驗結果可知在基板表面同時具有抗反射膜與次波長結構將可使得波段500nm至1000nm的平均反射效率由9.6%下降至4.5%;進而沉積非晶矽薄膜在一般無結構基板上,其類似於薄膜太陽能電池(thin-film solar cells)中的作用層,而在波段650nm至1000nm之平均吸收效率僅55.3%,若僅製作抗反射膜於表面可使平均吸收率增加至62.6%,或者同時使用抗反射膜與次波長結構後可以使得平均吸收效率達到73.8%,再進而增製金屬全反射層可以令平均吸收效率達到84.3%。最後鍍製透明導電層於結構表面與非晶矽薄膜間,也可使得平均吸收效率達到85%以上。

This study is to compare the subwavelength-structured effects of optical discs on antireflection and light trapping, and apply them to solar cell applications. By increasing the diffraction angle to the critical angle of total internal reflection, the absorption length can be extended and the absorption rate can be enhanced.
Through the simulation of the vector diffraction theory, we analyzed the effects of the subwavelength-structured surfaces corresponding to different duty cycle and depth for antireflection. The trend of decreasing reflection was discussed while the subwavelength-structured surface was applied to the amorphous silicon (a-Si) thin film. The experimental results show that the antireflection coating and subwavelength structure on a substrate can decrease the average reflection from 9.6% to 4.5% in the wavelength range of 500nm to 1000nm. By depositing the a-Si thin film on the unstructured substrate, which acts as a silicon active layer in the thin-film solar cells, the average absorption is 55.3% in the wavelength range of 650nm to 1000nm. It increases to 62.2% if only the antireflection film is coated on its surface, to 73.8% if the subwavelength-structured surface is used, and to 84.3% if the metal reflector is deposited. Finally, the average absorption is above 85% if the transparent conducting film is also deposited between the subwavelength-structured surface and a-Si thin film.
其他識別: U0005-2508200810522600
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.