Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2121
標題: 工具機滾珠導螺桿之熱效應研究
A Study on the Thermal Effect of Ball Screw for Machine Tool
作者: 張詠欽
Zhang, Yong-Qin
關鍵字: 熱效應;thermal effects;摩擦扭矩;熱功率;熱溫升方程式;廣義對流係數;friction torsions;thermal power;formula of thermal temperature;coefficient of general thermal convection
出版社: 機械工程學系所
引用: [1]O. Horejs, “Thermo-Mechanical Model of Ball Screw with Non-Steady Heat Sources,” Thermal Issues in Emerging Technologies, 3-6 Jan 2007, pp. 133-137. [2]C.H. Wu ,Y.T. Kung, “Thermal analysis for the feed drive system of a CNC machine center,” International Journal of Machine Tools and Manufacture, Vol. 43, Dec. 2003, pp.1521-1528. [3]J. Braasch, “Accuracy of Feed Axes,” Johannes Heidenhain Technical Information, 2004, pp.1-12. [4]D. W. Cho, S. K. Kim , W. S. Yun W. S. Yun, “Thermal error analysis for a CNC lathe feed drive system,” International Journal of Machine Tools and Manufacture, Vol. 39, July 1999, pp. 1087-1101. [5]D. W. Cho, S. K. Kim, “Real-time estimation of temperature distribution in a ball-screw system,” International Journal of Machine Tools and Manufacture, Vol. 37, Apr. 1997, pp. 451-464. [6]S. C. Huang, “Analysis of a model to forecast thermal deformation of ball screw feed drive systems,” International Journal of Machine Tools and Manufacture , Vol. 35, Aug. 1995, pp.1009-1104. [7]J. Ni, J. Yang, J. Yuan, “Thermal error mode analysis and robust modeling for error compensation on a CNC turning center,” International Journal of Machine Tools and Manufacture, Vol. 39,Sep. 1999, pp. 1367-1381. [8]J. H. Lee ,S. H. Yang, “Statistical optimization and assessment of a thermal error model for CNC machine tools,” International Journal of Machine Tools and Manufacture, Vol. 42, Jan. 2002, pp.147-155. [9]張銘雄,「工具機溫昇熱變形及補償控制之研究」,私立中原大學機械工程學系碩士學位論文,2003年7月,第1-105頁。 [10]S. Li, Y. Zhang, G. Zhang, “A study of pre-compensation for thermal errors of NC machine tools,” International Journal of Machine Tools and Manufacture, Vol. 37, Dec. 1997, pp.1715-1719. [11]U. Heisel, G. Koscsak, T. Stehle, “Thermography-Based Investigation into Thermally Induced Positioning Errors of Feed Drives By Example of a Ball Screw,” CIRP Annals Manufacturing Technology, Vol. 55, 2006, pp.423-426. [12]R. Bonse, U. Herbst, P. McKeown, M. Weck, “Reduction and Compensation of Thermal Errors in Machine Tools,” CIRP Annals Manufacturing Technology, Vol. 44, 1995, pp.589-598. [13]銀泰科技股份有限公司,「PMI中文版滾珠螺桿型錄」,http://www.pmi-amt.com/。 [14]顏嘉男,「泛用伺服馬達應用技術」,全華圖書股份有限公司,2006年。 [15]羅昇企業股份有限公司,「日本三菱伺服馬達J2S型錄」,http://www.acepillar.com.tw。 [16]南樺電機有限公司,「三菱伺服驅動器MR-J2 Super型錄」,http://cht.nahua.com.tw/。 [17]台灣東方馬達股份有限公司,「馬達選用計算」,http://www.orientalmotor.com.tw。 [18]上銀科技股份有限公司,「滾珠螺桿型錄」,http://www.hiwin.com.tw/。 [19]克普典科技股份有限公司,「滑動面耐磨片目錄」,http://www.capind.com.tw/。 [20]劉長記,「軸承手冊」,徐氏基金會,1992年。 [21]大西清,「JIS機械設計製圖便覽」,東京都理工学社,2001年。 [22]Online Materials Information-MatWeb,http://www.matweb.com/。 [23]優尼特機械有限公司,「聯軸器詳細規格」,http://www.autounit.com.tw/。 [24]殷克羅柏拉、戴維特、張國標編譯,「熱傳學」,全華圖書股份有限公司,1990年。 [25]A. F. Mills, “Heat Transfer Second Edition,” 1998. [26]李祥,「熱傳學分析」,鼎茂圖書出版股份有限公司,2007年。 [27]王栢村,「電腦補助工程分析之實務與應用」,全華圖書股份有限公司,2001年。 [28]實威科技股份有限公司,「COSMOSWorks電腦輔助工程分析入門篇Designer」,全華圖書股份有限公司,2007年。 [29]實威科技股份有限公司,「COSMOSWorks電腦輔助工程分析進階篇Professional」,全華圖書股份有限公司,2007年。
摘要: 
在工具機上的滾珠導螺桿經過長時間運轉後,因移動螺帽、滾珠、螺桿之間相互摩擦與螺桿、軸承之間相互摩擦及伺服馬達所產生升的熱能有部分傳導到螺桿上,會在螺桿行程部位與軸承結合處上有熱量的累積,這些熱量累積會造成螺桿的熱溫升、熱應力、熱位移等問題。
為了求得螺桿的熱溫升、熱應力、熱位移之理論值,本研究先透過伺服馬達運轉脈波數計算假設出滾珠導螺的運動條件。接著透過滾珠導螺桿與軸承的摩擦扭矩來決定螺桿行程部位與軸承結合處之熱功率,再接著透過熱生成、熱對流、一維徑向熱阻、廣義對流係數、散熱鰭片散熱等觀念建立出螺桿在行程部位與軸承結合處之熱溫升理論公式。最後透過物體熱膨脹與靜態應力-應變觀念,來完成螺桿熱溫升之熱應力與熱位移理論公式設定。
本研究透過有限元素分析,先模擬分析出滾珠螺桿簡化模型使用與不使用廣義對流係數之熱溫升,比較使用與不使用廣義對流係數之螺桿熱溫升結果後,可初步發現兩者的模擬溫升值相接近,以證明使用廣義對流係數所模擬出的螺桿熱溫升結果是可用來做螺桿的熱應力與熱位移的使用參數,最後將溫升參數代入螺桿靜態分析中,可模擬分析出螺桿的熱應力與熱位移結果。
從模擬的熱應力與熱位移結果可發現模擬值與理論推導值相近,可知在理論的假設和設定是可行的。模擬的熱應力值遠小於螺桿本身材料之降伏強度,當螺桿反覆熱膨脹與冷卻收縮後,螺桿不至於被破壞。模擬的最大熱位移值發生在螺桿的高溫處(約有20微米),高溫處會造成螺桿有彎曲的現象。

Due to the friction among nut, ball, screw, and bearing, and the heat generated by the servomotor, there will have heat accumulation on the ball screw and bearing. These heat accumulations will cause the problems of thermal temperature rising, thermal stress, and thermal deformation.
To solve theoretical values of these thermal effects, the moving conditions of the ball screw is studied in the first beginning on this thesis. The friction torsions of the ball screw and bearing are then discussed to determine the thermal power on the ball screw and bearing. The formula of thermal temperature between ball screw and bearing is then established through thermal generation, thermal convection, 1-D thermal resistance, coefficient of general thermal convection, heat dissipation of fin. And finally, the equation of the thermal stress and thermal deformation for the ball screw is formulated through thermal expansion and static stress strain relationship.
In this study, finite element analysis (FEA) is used to simulate the thermal temperature rising. From the simulation result, it is found that the temperature rising result by using coefficient of general thermal convection can be used for determining simulation of the thermal stress and thermal deformation of the ball screw.
It is found that the simulation values are similar to the theoretical calculating values. The simulated thermal stress value is far less than the yield stress of the ball screw. Hence, the ball screw will not be destroyed under repetitive thermal expansion and contraction.
URI: http://hdl.handle.net/11455/2121
其他識別: U0005-2508200813130700
Appears in Collections:機械工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.