Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2121
DC FieldValueLanguage
dc.contributor紀華偉zh_TW
dc.contributor邱顯俊zh_TW
dc.contributor.advisor陳昭亮zh_TW
dc.contributor.author張詠欽zh_TW
dc.contributor.authorZhang, Yong-Qinen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-05T11:42:32Z-
dc.date.available2014-06-05T11:42:32Z-
dc.identifierU0005-2508200813130700zh_TW
dc.identifier.citation[1]O. Horejs, “Thermo-Mechanical Model of Ball Screw with Non-Steady Heat Sources,” Thermal Issues in Emerging Technologies, 3-6 Jan 2007, pp. 133-137. [2]C.H. Wu ,Y.T. Kung, “Thermal analysis for the feed drive system of a CNC machine center,” International Journal of Machine Tools and Manufacture, Vol. 43, Dec. 2003, pp.1521-1528. [3]J. Braasch, “Accuracy of Feed Axes,” Johannes Heidenhain Technical Information, 2004, pp.1-12. [4]D. W. Cho, S. K. Kim , W. S. Yun W. S. Yun, “Thermal error analysis for a CNC lathe feed drive system,” International Journal of Machine Tools and Manufacture, Vol. 39, July 1999, pp. 1087-1101. [5]D. W. Cho, S. K. Kim, “Real-time estimation of temperature distribution in a ball-screw system,” International Journal of Machine Tools and Manufacture, Vol. 37, Apr. 1997, pp. 451-464. [6]S. C. Huang, “Analysis of a model to forecast thermal deformation of ball screw feed drive systems,” International Journal of Machine Tools and Manufacture , Vol. 35, Aug. 1995, pp.1009-1104. [7]J. Ni, J. Yang, J. Yuan, “Thermal error mode analysis and robust modeling for error compensation on a CNC turning center,” International Journal of Machine Tools and Manufacture, Vol. 39,Sep. 1999, pp. 1367-1381. [8]J. H. Lee ,S. H. Yang, “Statistical optimization and assessment of a thermal error model for CNC machine tools,” International Journal of Machine Tools and Manufacture, Vol. 42, Jan. 2002, pp.147-155. [9]張銘雄,「工具機溫昇熱變形及補償控制之研究」,私立中原大學機械工程學系碩士學位論文,2003年7月,第1-105頁。 [10]S. Li, Y. Zhang, G. Zhang, “A study of pre-compensation for thermal errors of NC machine tools,” International Journal of Machine Tools and Manufacture, Vol. 37, Dec. 1997, pp.1715-1719. [11]U. Heisel, G. Koscsak, T. Stehle, “Thermography-Based Investigation into Thermally Induced Positioning Errors of Feed Drives By Example of a Ball Screw,” CIRP Annals Manufacturing Technology, Vol. 55, 2006, pp.423-426. [12]R. Bonse, U. Herbst, P. McKeown, M. Weck, “Reduction and Compensation of Thermal Errors in Machine Tools,” CIRP Annals Manufacturing Technology, Vol. 44, 1995, pp.589-598. [13]銀泰科技股份有限公司,「PMI中文版滾珠螺桿型錄」,http://www.pmi-amt.com/。 [14]顏嘉男,「泛用伺服馬達應用技術」,全華圖書股份有限公司,2006年。 [15]羅昇企業股份有限公司,「日本三菱伺服馬達J2S型錄」,http://www.acepillar.com.tw。 [16]南樺電機有限公司,「三菱伺服驅動器MR-J2 Super型錄」,http://cht.nahua.com.tw/。 [17]台灣東方馬達股份有限公司,「馬達選用計算」,http://www.orientalmotor.com.tw。 [18]上銀科技股份有限公司,「滾珠螺桿型錄」,http://www.hiwin.com.tw/。 [19]克普典科技股份有限公司,「滑動面耐磨片目錄」,http://www.capind.com.tw/。 [20]劉長記,「軸承手冊」,徐氏基金會,1992年。 [21]大西清,「JIS機械設計製圖便覽」,東京都理工学社,2001年。 [22]Online Materials Information-MatWeb,http://www.matweb.com/。 [23]優尼特機械有限公司,「聯軸器詳細規格」,http://www.autounit.com.tw/。 [24]殷克羅柏拉、戴維特、張國標編譯,「熱傳學」,全華圖書股份有限公司,1990年。 [25]A. F. Mills, “Heat Transfer Second Edition,” 1998. [26]李祥,「熱傳學分析」,鼎茂圖書出版股份有限公司,2007年。 [27]王栢村,「電腦補助工程分析之實務與應用」,全華圖書股份有限公司,2001年。 [28]實威科技股份有限公司,「COSMOSWorks電腦輔助工程分析入門篇Designer」,全華圖書股份有限公司,2007年。 [29]實威科技股份有限公司,「COSMOSWorks電腦輔助工程分析進階篇Professional」,全華圖書股份有限公司,2007年。zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/2121-
dc.description.abstract在工具機上的滾珠導螺桿經過長時間運轉後,因移動螺帽、滾珠、螺桿之間相互摩擦與螺桿、軸承之間相互摩擦及伺服馬達所產生升的熱能有部分傳導到螺桿上,會在螺桿行程部位與軸承結合處上有熱量的累積,這些熱量累積會造成螺桿的熱溫升、熱應力、熱位移等問題。 為了求得螺桿的熱溫升、熱應力、熱位移之理論值,本研究先透過伺服馬達運轉脈波數計算假設出滾珠導螺的運動條件。接著透過滾珠導螺桿與軸承的摩擦扭矩來決定螺桿行程部位與軸承結合處之熱功率,再接著透過熱生成、熱對流、一維徑向熱阻、廣義對流係數、散熱鰭片散熱等觀念建立出螺桿在行程部位與軸承結合處之熱溫升理論公式。最後透過物體熱膨脹與靜態應力-應變觀念,來完成螺桿熱溫升之熱應力與熱位移理論公式設定。 本研究透過有限元素分析,先模擬分析出滾珠螺桿簡化模型使用與不使用廣義對流係數之熱溫升,比較使用與不使用廣義對流係數之螺桿熱溫升結果後,可初步發現兩者的模擬溫升值相接近,以證明使用廣義對流係數所模擬出的螺桿熱溫升結果是可用來做螺桿的熱應力與熱位移的使用參數,最後將溫升參數代入螺桿靜態分析中,可模擬分析出螺桿的熱應力與熱位移結果。 從模擬的熱應力與熱位移結果可發現模擬值與理論推導值相近,可知在理論的假設和設定是可行的。模擬的熱應力值遠小於螺桿本身材料之降伏強度,當螺桿反覆熱膨脹與冷卻收縮後,螺桿不至於被破壞。模擬的最大熱位移值發生在螺桿的高溫處(約有20微米),高溫處會造成螺桿有彎曲的現象。zh_TW
dc.description.abstractDue to the friction among nut, ball, screw, and bearing, and the heat generated by the servomotor, there will have heat accumulation on the ball screw and bearing. These heat accumulations will cause the problems of thermal temperature rising, thermal stress, and thermal deformation. To solve theoretical values of these thermal effects, the moving conditions of the ball screw is studied in the first beginning on this thesis. The friction torsions of the ball screw and bearing are then discussed to determine the thermal power on the ball screw and bearing. The formula of thermal temperature between ball screw and bearing is then established through thermal generation, thermal convection, 1-D thermal resistance, coefficient of general thermal convection, heat dissipation of fin. And finally, the equation of the thermal stress and thermal deformation for the ball screw is formulated through thermal expansion and static stress strain relationship. In this study, finite element analysis (FEA) is used to simulate the thermal temperature rising. From the simulation result, it is found that the temperature rising result by using coefficient of general thermal convection can be used for determining simulation of the thermal stress and thermal deformation of the ball screw. It is found that the simulation values are similar to the theoretical calculating values. The simulated thermal stress value is far less than the yield stress of the ball screw. Hence, the ball screw will not be destroyed under repetitive thermal expansion and contraction.en_US
dc.description.tableofcontents誌謝.......................................................I 中文摘要..................................................II Abstract.................................................III 目錄......................................................IV 圖目錄..................................................VIII 表目錄..................................................XIII 第一章 緒論................................................1 1.1 前言...................................................1 1.2 文獻回顧...............................................2 1.3 研究目的與方法.........................................7 1.4 論文架構...............................................7 第二章 理論推導............................................9 2-1 移動平台往覆運動條件設定..............................10 2-1-1 滾珠導螺桿導程計算..................................10 2-1-2 電子齒輪比與伺服馬達轉一圈所需之脈波計算............11 2-1-3 運轉脈波速度與動作脈波數計算........................11 2-1-4 繪出脈波速度-時間關係圖與速度-時間關係圖............12 2-2 滾珠導螺桿熱功率計算..................................13 2-2-1 平台移動量、加速度與馬達平均轉速計算................14 2-2-2 滾珠導螺桿軸向負荷計算..............................15 2-2-3滾珠導螺桿摩擦扭矩計算...............................17 2-2-4滾珠導螺桿熱功率計算.................................22 2-3 理論公式設定..........................................25 2-3-1 一維穩態熱傳熱方程..................................25 2-3-2 一維穩態熱傳熱之熱阻觀念............................29 2-3-3 具有熱生成與熱對流之熱溫升推導......................39 2-3-4 散熱鰭片與熱對流之熱溫升推導........................41 2-3-5熱應力與熱應變.......................................50 2-3-6 理論公式設定小結....................................51 第三章 有限元素分析.......................................53 3-1 建構簡化模型..........................................53 3-2 前處理步驟............................................55 3-3 求解步驟..............................................62 第四章 結果與討論.........................................65 4-1 螺桿溫升結果與討論1...................................65 4-1-1 螺桿穩態溫升結果與討論..............................65 4-1-2 螺桿暫態溫升結果與討論..............................67 4-2 螺桿溫升結果與討論2...................................69 4-2-1 螺桿有部分熱量透過移動螺帽被帶走之穩態螺桿溫升結果與討論..................69 4-2-2 螺桿有部分熱量透過移動螺帽被帶走之暫態螺桿溫升結果與討論........................................................72 4-2-3 螺桿有部分熱量透過移動螺帽被帶走之穩態螺桿、移動螺帽溫升結果與討論..............................................74 4-2-4 螺桿有部分熱量透過移動螺帽被帶走之暫態螺桿、移動螺帽溫升結果與討論..............................................77 4-3 螺桿溫升結果與討論3...................................79 4-3-1 螺桿與軸承結合處與螺桿行程部位穩態溫升結果與討論....79 4-3-2 螺桿與軸承結合處與螺桿行程部位暫態溫升結果與討論....84 4-3-3 螺桿、移動螺帽、簡化軸承模型與詳細軸承座模型之穩態溫升結果與討論................................................89 4-3-5 螺桿、移動螺帽、簡化軸承、簡化軸承座模型之穩態溫升結果與討論....................................................92 4-3-6 螺桿、移動螺帽、簡化軸承、簡化軸承座模型之暫態溫升結果與討論....................................................94 4-4 螺桿溫升結果與討論4...................................97 4-4-1 螺桿與軸承結合處與螺桿行程部位穩態溫升結果與討論....97 4-4-2 螺桿與軸承結合處與螺桿行程部位暫態溫升結果與討論...102 4-4-3 螺桿、移動螺帽、簡化軸承模型與詳細軸承座模型之穩態溫升結果與討論...............................................106 4-4-4 螺桿、移動螺帽、簡化軸承模型與詳細軸承座模型之暫態溫升結果與討論...............................................108 4-4-5 螺桿、移動螺帽、簡化軸承、簡化軸承座模型之穩態溫升結果與討論...................................................110 4-4-6 螺桿、移動螺帽、簡化軸承、簡化軸承座模型之暫態溫升結果與討論...................................................112 4-5 熱應力與熱位移結果與討論.............................114 4-5-1 穩態溫升熱應力與熱位移結果與討論...................114 4-5-2 暫態溫升熱應力與熱位移結果與討論...................116 第五章 結論與未來展望....................................118 5-1 結論.................................................118 5-2 未來展望.............................................122 參考文獻.................................................123zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508200813130700en_US
dc.subject熱效應zh_TW
dc.subjectthermal effectsen_US
dc.subject摩擦扭矩zh_TW
dc.subject熱功率zh_TW
dc.subject熱溫升方程式zh_TW
dc.subject廣義對流係數zh_TW
dc.subjectfriction torsionsen_US
dc.subjectthermal poweren_US
dc.subjectformula of thermal temperatureen_US
dc.subjectcoefficient of general thermal convectionen_US
dc.title工具機滾珠導螺桿之熱效應研究zh_TW
dc.titleA Study on the Thermal Effect of Ball Screw for Machine Toolen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:機械工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.