Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorWEI, LU CHIHen_US
dc.identifier.citation【王栢村,1997】 王栢村,1997,振動學,全華科技圖書股份有限公司。 【王詠傑,2005】 王詠傑,2005,應用於車削的主動式減振控制的壓電致動刀具設計,私立逢甲大學機械工程研究所碩士論文。 【王等人,2005】王栢村、趙志燁、吳建德,1999年,“應用實驗模態分析於高爾夫球頭素料之材料性質測定,”國立屏東科技大學學報,V ol. 8,311-317頁。 【林建宏,2003】 林建宏,2003,磁流變液車刀減振器設計分析,國立台灣科技大學機械工程研究所碩士論文。 【陳順宇,1997】 陳順宇,1997,迴歸分析,華泰書局。 【莊集黃,2005】 莊集黃,2005,減振刀桿之可行研究,國立中興大學械工程研究所碩士論文。 【集研科技,2000】集研科技,2000,集研科技儀器說明手冊,集研科技有限股份公司。 【日本ばね技術研究會,1996】日本ばね技術研究會編著,賴耿陽譯,1996,彈簧之設計與製造,復漢出版社。 【Andreassen et al., 1974】L. Andreassen, G. Rosdal and H. K. Holmen, 1974, “Adjustable Damping Device in Particular for Boring Bar and the Like,” U.S. Patent No. 3,838,936. 【Andreassen, 1995】L. Andreassen, 1995, “Means for damping vibrations, for example self-generated oscillations in boring bars and similar,” U.S. Patent No. 5,413,318. 【Arnold, 1946】R. N. Arnold, 1946, “The Mechanism of Tool Vibration in the Cutting of Steel,” Proceedings of the Institution of Mechanical Engineers, Vol. 154, pp.261. 【Baek et al , 1997】D. K.Baek, T. J. Ko. and H. S. Kim, 1997, “A dynamic surface model for face milling,” Precision Engineering, Vol. 20, pp. 171-178. 【Cobb, 1997】W. T. Cobb, 1997, “Tuned Damping System for Suppressing Vibrations During Machining,” U.S. Patent No. 5,700,116. 【Comstock et al, 1968】 T. R. Comstock , F. S. Tse and J. R. Lemon, 1968 , “Dynamic control of vibration and chatter in machine tools,” Machinery, Vol. 121 , pp.102-103. 【Dalenbring, 1999】M. Dalenbring, 1999, “Damping function estimation based on measured vibration frequency responses and finite-element displacement modes,” Mechanical System and Signal Processing, Vol. 13, No. 4, pp. 547-569. 【Edhi & Hoshi, 2001】E. Edhi and T. Hoshi, 2001, “Stabilization of High Frequency Chatter Vibration in Fine Boring by Friction Damper,” Journal of the International Societies for Precision Engineering and Nanotechnology, Vol. 23, pp. 224-234. 【Ema & Marui, 1996】S. Ema and E. Marui, 1996, “Damping Characteristics of an Impact Damper and Its Application,” International Journal of Machine Tools & Manufacture, Vol. 36, No. 3, pp. 293-306. 【Ema & Marui, 2000】 S. Ema and E. Marui, 2000, “Suppression of Chatter Vibration of Boring Tools Using Impact Dampers,” International Journal of Machine Tools & Manufacture, pp. 1141-1156. 【Etling & Stern, 2002】S. A. Etling and E. L. Stern, 2002, “Tunable Boring Bar for Suppressing Vibrations and Method There of,” U.S. Patent No. 6,443673. 【Fitzgerald et al., 1985】G. W. Fitzgerald, R. S. Gulibon and P. M. Penrod, 1985, “Boring Tool and Method of Reducing Vibrations Therein,” U.S. Patent No. 4,553,884. 【Hartog, 1956】 J. P. Hartog, 1956, Mechanical Vibrations, New York: McGraw-Hill, fourth edition. 【Hunt, 1991】G. E. Hunt, 1991, “Vibration Dampened Boring Bar,” U.S. Patent No. 4,998,851. 【Jemielniak & Widota, 1984】K. Jemielniak and A. Widota, 1984, “Suppression of self -excited vibration by the spindle speed variation method,” International Journal of Machine Tool Design and Research , Vol. 24, pp. 207 - 214. 【Lee et al., 2001】 E. C. Lee, C. Y. Nian and Y. S. Tarng, 2001, “Design of a Dynamic Vibration Absorber Against Vibrations in Turning Operations,” Journal of Materials Processing Technology, Vol. 108, pp. 278-285. 【Lee et al., 2003】Dai Gil Lee, Hui Yun Hwang and Jin Kook Kim, 2003, “Design and manufacture of a carbon fiber epoxy rotating boring bar,” Composite Structures, Vol. 60, pp. 115–124. 【Lewis, 1955】F. M. Lewis, 1955, “The Extended Theory of the Viscous Vibration Damper,” Journal of Applied Mechanics, Vol. 32, pp. 377-382. 【Li et al., 2003】C. J. Li, A. G. Ulsoy and W. J. Endres, 2003, “The Effect of Flexible-Tool Rotation on Regenerative Instability in Machining,” ASME Journal of Manufacturing Science and Engineering, Vol. 125, pp. 39-47. 【Liu & Liu, 1985】C. Liu and T. Liu, 1985, “ Automated chattersuppression by tool geometry control,” Journal of Engineering for Industry, Vol. 107, pp.95 - 98. 【Mao et al., 2004】Kuanmin Mao, Michael Yu Wang1, Zhiwei Xu and Tianning Chen, 2004, “Simulation and Characterization of Particle Damping in Transient Vibrations,” Journal of Vibration and Acoustics, Vol. 126, pp. 202-211. 【Marui et al., 1998】E. Marui, S. Ema, M. Hashimoto and Y. Wakasawa, 1998, “Plate Insertion as a Means to Improve the Damping Capacity of a Cutting Tool System,” International Journal of Machine Tools & Manufacture, Vol. 38, pp.1209-1220. 【Merritt, 1965】H. E. Merritt, 1965, “Theory of Self-Excited Machine-Tool Chatter,” Journal of Engineering for Industry, Vol. 87, pp. 447-454. 【Morgan & Wang, 2002】R. A. Morgan and K. W. Wang, 2002, “An Active-Passive Piezoelectric Absorber for Structural Vibration Control Under Harmonic Excitations with Time-Varying Frequency, Part 2 Experimental Validation and Parametric Study,” ASME Journal of Vibration and Acoustics, Vol. 124, pp. 84-89. 【Ozel & Altan, 2000】T. Ozel and T. Altan, 2000, “Process simulation using finite element method: prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling.,” International Journal of Machine Tools and Manufacture, Vol. 40, pp. 713-738. 【Shurtliff, 1986】N. E. Shurtliff, 1986, “Damped Boring Bar and Tool Holder,” U.S. Patent No. 4,616,738. 【Tarng et al., 2000】Y. S. Tarng, J. Y. Kao and E. C. Lee, 2000, “Chatter Suppression in Turning Operations with a Tuned Vibration Absorber,” Journal of Materials Processing Technology, Vol. 105, pp. 55-60. 【Tewani et al., 1995】S. G. Tewani, K. E. Rouch and B. L. Walcott, 1995, “A Study of Cutting Process Stability of a Boring Bar with Active Dynamic Absorber,” International Journal of Machine Tools & Manufacture, Vol. 35, No. 1, pp. 91-108. 【Thompson et al., 1980】A. G. Thompson, 1980, “Auxiliary Mass Throw in a Tuned and Damped Vibration Absorber,” Journal of Sound and Vibration, Vol. 70, pp. 481-486.zh_TW
dc.description.abstract切削加工過程中影響加工品質的因素之一為切削振動,而該因素最難掌控的項目為切削顫振,它所造成的噪音不僅讓使用者不適,還會影響機具的壽命及加工品質,本研究針對可降低切削振動之可調式減振搪刀桿,分析其系統特性,以掌握其減振性能。研究首先分析各式刀桿之減振裝置及其模式與適用場合,隨後以系統辨識的方法探討本研究之可調式減振搪刀桿之系統剛性與阻尼及其與減振裝置壓縮旋置量之關係,同時利用統計變異迴歸分析的方式建構此搪刀桿之剛性與阻尼模式,並經實驗驗證其適用性。 經系統辨識實驗,本研究之可調式減振搪刀桿之刀桿阻尼C與壓縮旋置量x之模式為C=-0.029x3+0.407x2-2.20x+12.4,此模式再經壓縮旋置量於0.5mm、2.5mm及4.5mm時驗證,模式之平均誤差在2%以內;刀桿剛性K與壓縮旋置量x之模式為K=303x3-1940x2+8890x +181000,經驗證其平均誤差在1%以內。減振器之阻尼C2=-0.026x3+0.351x2-1.726x+4.186,經驗證其平均誤差在5%以內;減振器剛性模式K2=121x3-932x2+4650x+4550,其驗證之平均誤差在7%以內,顯示本研究之方法適用於此一可調式減振搪刀桿之剛性與阻尼特性評估。zh_TW
dc.description.abstractVibration is one of the factors that affect the machining quality. Among many items, chatter is the most difficult item to control in vibration. It not only effect the life of machine tool and manufacturing quality but let manufacturer feel unwell for producing noise.This study is intended to investigate the system properties of an adjustable vibration-reduction boring bar. We first analyzed the structure and model of various vibration-reduction tool holders. The vibration characteristics, including the damping and the stiffness, and their relationship to the compression displacement of the adjustable vibration-reduction boring bar are then investigated via system identification approach. Models for damping and stiffness are then constructed based on experimental data with statistical regression by the analysis of variation. Further experiments are then conducted to verify these models. The relationship between the damping C and the compression displacement x of the boring bar by this approach is identified as C=-0.029x3+0.407x2-2.20x+12.4. This model is further verified with average errors less than 2% at compression displacements 0.5mm, 2.5mm and 4.5mm. The stiffness K is identified as K=303x3-1940x2+8890x +181000 with average verification errors less then 1%. The damping of vibration-reduction system C2 is identified as -0.026x3+0.35x2-1.73x+4.19 with average verification errors less then 5%. The stiffness of vibration-reduction system K2 is identified as 121x3-932x2+4650x+4550 with average verification errors less then 7%. It concludes that the approach and models of the study are suitable to evaluate the damping and the stiffness of the adjustable vibration-reduction boring bar.en_US
dc.description.tableofcontents誌謝 III 摘要 IV ABSTRACT V 目錄 VI 表目錄 IX 圖目錄 XII 符號表 XVII 第一章 緒論 1 1.1 研究動機與目的 2 1.2 文獻回顧 2 1.3 研究方法與步驟 6 1.4 本文大綱 7 第二章 減振刀桿文獻回顧與模式分析 8 2.1 阻尼特性分析 8 2.1.1 庫倫阻尼 8 2.1.2 黏滯阻尼 10 2.1.3 結構阻尼 10 2.2 剛性特性分析 11 2.2.1 彈簧負荷-撓曲分析 11 2.2.2 彈簧之彈性係數 12 2.2.3 彈簧與溫度之關係 13 2.3 各式減振刀桿分析 13 2.3.1 衝擊阻尼器 14 2.3.2 可調式動態阻尼器 16 2.3.3 彈簧動態阻尼器 17 2.3.4 摩擦阻尼器 19 2.3.5 薄板嵌入式阻尼器 22 2.3.6 微粒式阻尼器 23 2.3.7 複合式減振阻尼器 25 2.4 刀桿之模式與減振方式比較 27 第三章 刀桿系統特性辨識 30 3.1 空刀桿模式分析 30 3.2 總體刀桿模式分析 31 3.3 刀桿系統特性辨識方法 33 3.3.1 自然衰減法 33 3.3.2 最大值選取法(半功率頻寬法) 35 3.4 辨識流程及儀器 37 3.4.1 衝擊鎚 39 3.4.2 單軸加速規 40 3.4.3 頻譜分析儀、筆記型電腦 42 3.4.4 試驗流程 43 3.5 辨識結果 44 第四章 搪刀桿性能迴歸分析 56 4.1 迴歸分析 56 4.1.1 迴歸模型之假設條件 56 4.1.2 迴歸母體參數之估計 57 4.1.3 迴歸分析程序 58 4.2 迴歸結果 59 4.2.1 總體刀桿阻尼迴歸結果 59 4.2.2 總體刀桿剛性迴歸分析結果 63 4.2.3 減振器阻尼迴歸結果 66 4.2.4 減振器剛性迴歸結果 69 4.3 系統模式驗證 73 4.3.1 總體刀桿阻尼預測結果 73 4.3.2 總體刀桿剛性預測結果 75 4.3.3 減振器阻尼預測結果 77 4.3.4 減振器剛性預測結果 79 4.3.5 差異討論 81 第五章 結論與展望 83 5.1結論 83 5.2未來展望 83 參考文獻 85 【附錄A】 刀桿試驗之訊號分析 89 【附錄A.1】 空刀桿試驗 89 【附錄A.2】 總體刀桿 92 【附錄A.2.1】 旋置0mm之試驗 92 【附錄A.2.2】 旋置2mm之試驗 95 【附錄A.2.3】 旋置4mm之試驗 98 【附錄A.2.4】 旋置6mm之試驗 101 【附錄A.2.5】 旋置1mm之實驗 104 【附錄A.2.6】 旋置3mm之實驗 107 【附錄A.2.7】 旋置5mm之實驗 110 【附錄A.2.8】 旋置0.5mm之實驗 114 【附錄A.2.9】 旋置2.5mm之實驗 117 【附錄A.2.10】 旋置4.5mm之實驗 120 【附錄B】半功率法辨識結果 123 【附錄C】試驗數據迴歸分析之殘差 127zh_TW
dc.subjectvibration-reduction boring baren_US
dc.subjectsystem identificationen_US
dc.subjectstatistical regressionen_US
dc.titleA Study on the Performance of an Adjustable Vibration-Reduction Boring Baren_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:機械工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.