Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2129
標題: 整合微機械加工之鋯鈦酸鉛微懸臂樑式致動器製作研究
Development of PZT Microcantilever Type Actuators by Mechanical-Chemical Machining Method
作者: 莊坤霖
Zhuang, Quan-Lin
關鍵字: micro-mechanical cutting;微機械加工;PZT;cantilever;鋯鈦酸鉛;懸臂樑
出版社: 機械工程學系所
引用: 1.G.H.Haerting,“Ferroelectric Thin Film for Electronic Applications,”Journal of Vacuum Science and Technology ,A,Vol.9,pp.414-420,1991. 2.C. Lee, T. Itoh, T. Suga,“Self-excited piezoelectric PZT microcantilevers for dynamic SFM -with inherent sensing and actuating capabilities,” Sensor and Actuators,A,Vol.72, pp.179-188,1999. 3.T.Shibata, K. Unno, E. Makino, S. Shimada,“Fabrication and characterization of diamond AFM probe integrated with PZT thin film sensor and actuator,”SCIENCE DIRECT, Sensors and Actuators,A,Vol.114, pp.398-405, 2004. 5. I. Son, A. Lal, B. Hubbard, and T. Olsen, Sensor and Actuators, A,Vol.91,p.351,2001. 6.C.Galassi,E.Roncari,C.Capiain and P.Pinasco,“PZT-based Suspensions for Type Casting, ”Journal of the European Ceramic Society ,Vol.17,pp.367-371,1997. 7.F.Hiroshi,I.Katsuhiro,M.Katsumi,S.Kazuo,M.Nobuyasu, “Deposition condition of epitaxially grown PZT films by CVD,” Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan, Vol.102, pp.795-798, 1994. 8. L.Weng, X.Bao,K.Sagoe-Crentsil,“Effect of acetylacetone on the preparation of PZT materials in sol-gel processing,”Materials Science and Engineering ,B, Vol.96, pp307-312, 2002. 9.John D, Mackenzie,“Ferrpelectric Materials by the Sol-gel Method,”J.Sol-gel Sci&Tech ,Vol.8, pp673-679,1997. 10.Van Tassel J,“Effect of solution processing on PZT thin film prepared by a hybrid MOD solution deposition route ,”Journal of Electroceramics ,pp.261-268, 1999. 11.Sweeney T,“Electrophore deposition of PZT ceramic films,”IEEE International Symposium on Applicaftions of Ferroelectric, Vol.1, pp.193-196. 12.J.S .Park , H.D. Park , S.G .Kang,“Fabrication and properties of PZT micro cantilevers using isotropic silicon dry etching process by XeF2 gas for release process,”Sensors and Actuators ,A,Vol.117 pp.1–7,2005. 13.Chang-Seong.Jeon,Joon-Shik.Park,Sang-Yeol.Lee ,Chan-Woo. Moon,“Fabrication and characteristics of out-of-plane piezoelectric micro grippers using MEMS processes,”Thin Solid Films,Vol.515,pp.4901–4904,2007. 14.S.SHIN, S.SONG,Y.LEE,NAE-EUNG.LEE,H.PARK, and J.LEE ,“Fabrication and Electromechanical Properties of Piezoelectric Micro-Transducers for Smart Device,”Integrated Ferroelectrics,Vol.54,pp.679–687, 2003. 15.B.Jaffe,“Piezoelectric Ceramics,”Academic Press Limited, 1971。 16.T.Ikeda,“Fundamentals of Piezoelectric,”Ohamsha ,Ltd, 1990. 17.汪建民,“陶瓷技術手冊(上),”中華民國科技發展促進會,1994。 18.J.Soderkvist,”Dynamic behavior of a piezoelectric beam,” J.Acoust.Soc.Am,Vol.90,pp.686-692,1991. 19.S.N. Chen,G.J. Wang,W.C. Yu,”Analytic Modeling and Experimental Verification of Thin-film Piezoelectric Vibration-Induced Micro Power Generator,” The 2004 ASME International Mechanical Engineering Congress,pp.107-114 ,2004. 20.G.J.Wang,Y.H.Lin,H.H.Yang,C.Y.Pan,”Design And Fabricat- ion Of A High Efficiency Piezoelectric Vibration- Inducded Micro Power Generator,” The 2003 ASME Interna- tional Mechanical Engineering Congress, Paper #42682,2003. 21.P.B. Koeneman, I.J. Busch-Vishiac, and K.L. Wood, “Feasibility of micro power supplies for MEMS,” Journal of Micro-electromechanical Systems, Vol. 6, pp.355- 362 ,1997. 22.C.B. Williams, and R.B. Yates, “Analysis of a micro- electric generator for Microsystems,” The 8th International Conference on Solid-State Sensors and Actuators,Vol.1,pp.369-372 ,1995. 23.C.B. Williams, and R.C. Woods and R.B. Yates,“Feasibility study of a vibration powered micro-electric generator,” Compact Power Sources (Digest No. 96/107), IEE Colloquium, pp.7/1-7/3 ,1996. 24.R. Amirtharajah and A. P. Chandrakasan, “Self-powered signal processing using vibration-based power generation,” IEEE Journal of Solid-State Circuits, Vol.33, pp. 687-695, 1998. 25.C. B. Williams, C. Shearwood, M. A. Harradine, P. H. Mellor, T.S. Birch, and R. B. Yates, “Development of an electromagnetic micro-generator,” IEE Porc.-Circuits Devices System,Vol.148,pp.337-342 ,2001. 26. W. J. Li, Z. Wen, P. K. Wong, G. M. H. Chan, P. H. W. Leong, “A microchined vibration-induced power generator for low power sensors of robotic systems,”The 8th International Symposium on Robotics with Application, pp.16-21 ,2000. 27.K.B. Know, S.J. Lee, C.N. Chu.“A Fluid Dynamic Analysis Model of the Ultra-Precision Cutting Mechanism,”Annals of the CIRP ,Vol.48,pp.43-46,1999. 28.J.D.Drescher, T. A. Dow,“Tool Force Model Development for Diamond Turning,”precision engineering,Vol.12,1990. 29.Ikawa,“Ultraprecision Metal Cutting Mechanism, ” Annals of the CIRP, Vol.40,pp.587-594,1991. 30.Ikawa.N,Shimada.Sh,Tanaka,H,Ohmori.G,“Atomistic Analysis of Nanometric Chip Removal as Affected by Tool-Work Interaction in Diamond Turning ,” An Annals of the CRIP, Vol.40,pp.551-554,1991. 31.R.W.Schwartz,“Chemical Solution Dposition of Perovskite Thin Films,”Chem. Mater.Vol.9,pp.2325-2340, 1997. 32.吳朗,“電子陶瓷-壓電,”全新科技圖書,1994。 33.量測發展中心,“電陶瓷應用線性研討會,”財團法人工業技術研究院,1999。 34. http://164.125.76/lectures/ferro/ferroelectric.htm。 35.T.L.Jordan,“Pyroelectricity of PZT –based thick-films,”Sensors and Actuators,Vol.76, pp.409-415,1999. 36.施敏升,“壓電致動器與感測器之分析與研究,”私立中原大學機械工程學系,碩士論文,2002。 37.楊忠諺、葉源益,”乾式蝕刻於矽微加工及微機電方面之應用,”「毫微米通訊」,第八卷,第四期。 38.F.Z.Fang,Y.C.Liu,“On Minimum Exit-burr in Micro Cutting,” Journal of Micromechanics and Microengineering,2004. 39.Z.J.Yuan,M.Zhou,S.Dong,“Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultraprecision Machining,”Journal of Materials Processing Technology,Vol.62,pp.327-330,1996. 40.K.Ishikawa,H.Suwabe,T.Nishide,M.Uneda,“A study combined vibration drilling by ultrasonic and low-frequency for hard and brittle material,” Precision Engineering,Vol.22, pp.196-205,1998. 41.C.Y.Tsui,C.C.Wu,M.C.Lu,C.F.Huang,“Drilling Of Microholes On Slicon Wafer With Ultrasonic Workpiece Holder,”THE ASME IDETC/CIE,2008. 42.S.A.Campbell,S.N. Port, and D. J. Schifrin,“Anisotropy and the Micromachining of Silicon, ”in semiconductor Micromachining ,2,West Sussex England:John Wiley&Son, Ltd.19,1998. 43.M.Madou,“Fundamentals Micro fabrication CRC Press,” New York,p.171,1997.
摘要: 
在目前文獻上記載了許多有關鋯鈦酸鉛(PZT)薄膜微感測器與微致動器的製備,其製程是相當複雜的。舉例來說,在鋯鈦酸鉛(PZT)薄膜結構的形狀定義,以往都需利用反覆的沉積犧牲層與蝕刻之步驟,即使這些製程是標準的半導體製程但是還是不適合用來製造鋯鈦酸鉛(PZT)的感測器與致動器,其原因有兩個。第一,利用黃光微影的方式定義出PZT形狀後,在650℃燒結PZT時,光阻無法承受此溫度導致破壞燒結出來的PZT表面。第二,鋯鈦酸鉛(PZT)薄膜的蝕刻相當困難,因鉛、鋯、鈦三個蝕刻速率都不相同,以往蝕刻鋯鈦酸鉛(PZT)材料方法有,濕蝕刻法(wet etching)、氣相蝕刻(gas phase etching)、反應離子蝕刻(ion etching)、電子束蝕刻(ion beam)。然而以上方法都有其缺點,例如:濕蝕刻不易蝕刻完全且不均勻,反應離子蝕刻與電子束蝕刻設備昂貴、製程費用高。相較其他方法,微切削可快速的將材料移除,再搭配背蝕刻可以輕易的定義懸臂樑式的結構形狀,製程流程較為簡易。因此本研究主要是利用微切削於鋯鈦酸鉛薄膜定義出懸臂樑形狀結構。
本論文將發展PZT微懸臂樑致動器,並分為兩部份討論。第一部份將利用溶膠-凝膠法(Sol-Gel)的方式製作出鋯鈦酸鉛(PZT)壓電薄膜,其厚度在1um~2um的範圍內,並且先製作出毫米等級(60mm×10mm×0.025mm)之鋯鈦酸鉛(PZT)懸臂樑結構。並利用此結構作為致動器討論其可行性。實驗結果顯示結構第一模態的自然共振頻115Hz,其懸臂樑頂端的位移訊號為21.6um。
第二部份為發展微切削搭配背蝕刻方法,本文稱為機械化學法(MCMM),製作出微米等級的懸臂樑結構。由於晶圓為硬脆材料,本研究還利用超音波輔助夾具將試片置於夾具上面配合微切削做輔助加工。實驗結果發現利用超音波夾具輔助切削可以大幅降低刀具磨耗並減少試片破壞。最後利用背蝕刻將微懸臂樑結構懸浮,成功製作出尺寸為1mm×0.2mm×0.03mm 的微懸臂樑致動器。

In the reported literature fabrication process of PZT micro sensors and actuators were minute and complicated. For example,
PZT suspended microstructures could be fabricated by sacrificial layers. Even though sacrificial etching is the standard semiconductor process, it is not suitable to fabricate PZT sensors and actuators for two reasons. First, sintering process of PZT layers should be heated at 650℃, and underneath photoresist could not sustain. Also, etching of PZT layers are extremely difficult because the etch rates of Pb, Zr, and Ti of PZT are quite different. In pervious works, wet etching, gas phase etching, RIE, and focus ion beam are reported to pattern PZT films. However, those methods have drawbacks such as poor etch uniformity and profile and expensive equipment and operational cost. Compared to the other methods, the micro-
mechanical cutting provides the better flexibility to simplify, stabilize and economize the fabrication process. This purpose of this thesis was to use micro-mechanical cutting to fabricate PZT thin-film cantilever-base actuators.
Specifically, two goals have been achieved. The first goal is to demonstrate the feasibility of using PZT thin films to actuate cantilever beams. PZT films are fabricated by sol-gel process. The resulting thickness is around 1~2μm. Fabricated thin films are used in the cantilever-based actuator whose dimension is 60mm × 10mm × 0.25mm. Experimental result shows that first resonance frequency of actuator is 115Hz and tip displacement of cantilever is up to 21.6μm.
The second part is to fabricate PZT microcantilever by micro-
mechanical cutting and back side etching called mechanical- chemical-machining-method(MCMM). Since silicon wafer is hard and brittle material, this thesis also use ultrasonic vibration assistance tool to improve machining quality. Instead of making the drill vibrate by the ultrasonic actuator, a new design of PZT-driving ultrasonic workpiece wafer holder is used to ensure the high quality, high efficiency and longer life for micro tools in milling the silicon wafer. Experimental result demonstrates the ultrasonic workpiece holder could enhance the quality and efficiency in micro-mechanical machining. After finishing micro-mechanical cutting in the front side of silicon wafer, back side chemical etch is used to release cantilever from the substrate. Micro cantilever with dimension 1mm × 0.2mm ×0.03mm.
URI: http://hdl.handle.net/11455/2129
其他識別: U0005-2508200814583800
Appears in Collections:機械工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.