Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2153
標題: 整合型的聚吡咯微濕度感測器
Integrated micro humidity sensor with polypyrrole and readout circuit
作者: 盧德豪
Lu, De-Hao
關鍵字: polypyrrole;聚吡咯;humidity sensor;ring oscillator circuit;CMOS;濕度感測器;環狀振盪電路;CMOS
出版社: 機械工程學系所
引用: [1] 吳明木,“陶瓷半導體溼度感知特性之研究”,國立成功大學化學研究所論文,1980。 [2] 劉迎春,葉湘濱,“現代新型傳感器原理與應用”,國防工業出版社, pp. 185-207, 2002。 [3] T. Hubert, “Humidity-Sensing Materials,” MRS BULLETIN, Vol. 24, pp. 49-54, 1999. [4] T. Boltshauser, M. Schonholzer, O. Brand and H. Baltes, “Resonant humidity sensors using industrial CMOS-technology combined with postprocessing,” Journal of Micromechanics and Microengineering, Vol. 2, No. 2, pp. 205-207, 1992 [5] H. Shibata, M. Ito, M. Asakursa and K. Watanabe, “A digital hygrometer using a ployimide film relative humidity sensor,” IEEE Transactions on Instrumentation and Measurement, Vol. 45, pp. 218-224, 1998. [6] Z. Wu, T. Chen, and P. L. Chen, “Development of humidity sensor of polyimide capacitive,” J. Huazhong Univ. of Sci. & Tech. , Vol. 27, pp. 46-48, 1999. [7] Y. Y. Qiu, C. Azeredo-Leme, L. R. Alcacer, and J. E. Franca, “A CMOS humidity sensor with on-chip calibration,” Sensors and Actuators A, Vol. 92, pp. 80-87, 2001. [8] C. Y. Lee, and G. B. Lee, “MEMS-bases humidity sensors with integrated temperature sensors for signal drift compensation,” IEEE Sensors, Vol 1, pp. 384-388, 2003. [9] E. Traversa, G. Gnappi, A. Montenero and G. Gusmanoa, “Ceramic thin films by sol-gel processing as novel materials for integrated humidity sensors,” Sensors and Actuators B, Vol. 31, pp. 59-70, 1996. [10] W. Qu and J. Meyer, “ Thick-film humidity sensor based on porous MnWO4 material ,” Meas. Sci. Technol, Vol. 8, pp. 593-600, 1997 [11] S. Chakraborty, K. Nemoto, K. Hara and P. T. Lai, “Moisture sensitive field effect transistors using SiO2/Si3N4/Al2O3 gate structure,” Sensors and Actuators B, pp.274-277, 1999. [12] S. Pokhrel and K. S. Nagaraja, “Electrical and humidity sensing properties of Chromium(III) oxide–tungsten(VI) oxide composites,” Sensors and Actuators B, Vol. 92, pp. 144–150, 2003. [13] B. Okcan and T. Akin, “A thermal conductivity based humidity sensor in a standard CMOS process,” IEEE Micro Electro Mechanical Systems, pp. 552-555, 2004. [14] N. Parvatikar, S. Jain, S. Khasima, M. Revansiddappa, S.V. Bhoraskar, and M.V.N. A. Prasad, “Electrical and humidity sensing properties of polyaniline/WO3 composites,” Sensors and Actuators B, Vol. 114, pp. 599–603, 2006. [15] Wangchang Geng, Nan Li, Xiaotian Li, Rui Wang, Jinchun Tu, and Tong Zhang, “Effect of polymerization time on the humidity sensing properties of polypyrrole,” Sensors and Actuators B, Vol. 125, pp. 114-119, 2007. [16] 翁祥益,“含電路的整合型濕度感測器之製作”,中興大學機械工程學系碩士論文,2005。 [17] T. A. Skothrim,“ Handbook of Conducting Polymers,” 2nd Ed, New York:Marcel Dekker , pp. 1195, 1986. [18] C. Kittel, Introduction to Solid State Physics, 6th Ed. John Wiley&Sons, Singapore, 1986. [19] K. K. Kanazawa, A. F. Diaz and G. B. Street, J. Chem. Soc., Chem.. Commun., pp. 854 , 1979. [20] 葉陶淵,“化學感測器中濕度感測器的新動向”,科儀新知,第二十一卷,第一期,pp. 83-99,1999。 [21] www.ch.vnu.edu.tw/pws/hhr/ppt/導電性高分子特論-oraltest.ppt。 [22] 黃正光,“CMOS數位積體電路分析與設計”,全華圖書,1997。 [23] A. S. Sedra and K. C. Smith, “Microelectronic circuits,” Oxford, Vol. 2, pp. 72-73, 1998. [24] L. Geng, Y. Zhao, X. Huang, S. Wang, S. Zhang, W. Huang and S. Wu, “The preparation and gas sensitivity study of polypyrrole/zinc oxide,” Synthetic Metals, Vol. 156, pp. 1078–1082, 2006. [25] B. L. Funt and A. F. Diaz, “Organic Electrochemistry: an Introduction and Guide,”New York: Marcel Dekker, p. 1337, 1991. [26] E. M. Genies, G. Bidan and A. F. Diaz, J. Electronal. Chem., Vol. 149, p. 101, 1983. [27] P. G. Su and W. Y. Tsai, “Humidity sensing and electrical properties of a composite material of nona-sized SiO2 and poly(2-acrylamido-2-methylpropane sulfonate),” Sensors and Actuators B, Vol. 100, pp. 417-422, 2004. [28] A. Alvarez-Herrero, G. Ramos, F. del Monte, E. Bernabeu and D. Levy, “Water adsorption in porous TiO2–SiO2 sol–gel films analyzed by spectroscopic ellipsometry,” Thin Solid Films, Vol. 455-456, pp. 356-360, 2004. [29] S. M. Sze, “Semiconductor Sensors,” John Wiley and Sons, pp. 388-396, 1994. [30] 詹熾樺,“以導電高分子-聚苯胺製作整合型微氨氣感測器”,中興大學機械工程學系碩士論文,2008。
摘要: 
本研究以CMOS-MEMS技術製作整合電路之微濕度感測器,所採用的感測材料為高分子-聚吡咯,利用化學氧化聚合的方式製作而成,不僅成本低廉且製備容易。濕度感測器的電極為改良式的梳狀結構,並將聚吡咯滴覆於電極間,當成介電層,其感測原理為當聚吡咯吸附及釋放水汽時,會造成材料內部介電係數的改變,使電容產生變化。訊號處理電路是採用環狀振盪電路,當吸咐水汽後電容值增加,會使得電路中振盪頻率下降,藉此量測環境中濕度的變化。
感測區的面積為1×1 mm2,電容對相對濕度的量測部分,以室溫(25℃)下的量測效果最佳,當相對濕度從25%上升至85%,電容值從17.54pF增加為35.06pF,總變化量為17.52pF,振盪頻率與相對濕度之量測,以室溫(25℃)下的量測效果最佳,當相對濕度從25%上升至85%,振盪頻率從38.49MHz下降至32.19MHz,總變化量為6.3MHz。對水汽平均反應時間為36秒,平均回復時間為191秒,在釋放水汽後,電容值仍可以回復到初始值,而此可知聚吡咯對濕度的反應上,擁有優異的性能。

This study investigates a micro humidity sensor integrated with readout circuit, which is fabricated by the commercial CMOS (complementary metal oxide semiconductor) process. The sensing film of the humidity sensor is polypyrrole that is synthesized by oxidative polymerization method. The electrodes consist of improved interdigital structures, and the polypyrrole is coated on the interdigital electrodes. The sensing principle of the sensor is based on the dielectric constant change when the sensing film absorbs or desorbs vapor. The humidity sensor includes a ring oscillator circuit, which converts the capacitance variation into the resonant frequency output.
The experimental results show that the optimal operating temperature for the sensor is at room temperature. The capacitance increases from 17.54pF to 35.06pF as the humidity changes from 25%RH to 85%RH at 25℃. The resonant frequency of the sensor with readout circuit varies from 38.49MHz to 32.19MHz under the humidity range of 25%-85%RH at 25℃. The average response and recovery time are 36s and 191s, respectively.
URI: http://hdl.handle.net/11455/2153
其他識別: U0005-2512200810030800
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.