Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2167
標題: 血液於旋轉微流道晶片沉降分離與型態之可視化實驗
Human peripheral blood sediments、separates and forms in centrifugal microchip : visualization experiments
作者: 梁博欣
Laing, Po-Shin
關鍵字: Microfluidics channel;旋轉微流道;visualization;Hct(Hematocrit);cells form;可視化;血球容積計;血球型態
出版社: 機械工程學系所
引用: Cheng X., Irimia D.,and Dixon M., “A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects,” Lab on a Chip, 2007, Vol.7, pp.170-178. Cho Y. K., Lee J. G., Park J. M., Lee B. S., Lee Y.,and Ko C., “One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device,”Lab Chip, 2007, Vol.7, pp.565-573. Gustafsson M., Hirschberg D., Palmberg C., Jornvall H., and Bergman T., “Integrated Sample Preparation and MALDI MASS Spectrometry on a Microfluidic Compact Disk,” Analytical Chemistry, Vol.76, No.2, 2004, pp. 345-350. Glockner P. S., and Naterer G. F., “Thermocapillary control of microfluidic transport with a stationary cyclic heat source,”Micromechanics and Microengineering, 2005, Vol.15, 2216-2229. Haeberle S., Breener T., Zengerle R., and Ducree J., “ Centrifugal extraction of plasma from whole blood on a rotating disk,” Lab Chip, 2006, Vol.6, pp.776-781. Haeberle S.,and Zengerle R., “Microfluidic platforms for lab-on-a-chip application,” Lab Chip, 2007, Vol.7, pp.1094-1110. Hernández P., Cortina L., Artaza H., Pol N., Lam R. M., Dorticós E., Macías C., Hernández C., del Valle L., Blanco A., Martínez A.,and Díaz F., “Autologous bone-marrow mononuclear cell implantation in patients with severe lower limb ischaemia:A comparison of using blood cell separator and Ficoll density gradient centrifugation,”Atherosclerosis, 2007, Vol.194, pp.52-56. Hirschberg D., Jagerbrink T., Samskog J., Gustafsson M., Stahlberg M., Alvelius G., Husman B., Carlquist M., Jornvall H.,and Bergman T., “Detection of Phosphorylated Peptides in Proteomic Analysis Using Microfluidic Compact Disk Technology ,” Analytical Chemistry, Vol.76, 2004, pp. 3864-3871. Ibrahim H. A., Badr R., Madou J.,and Bachas G., “Fluorescent Ion-selective Optode Membranes Incorporated onto a Centrifugal Microfluidics Platform,” Analytical Chemistry, Vol.74, 2002,pp. 5569-5575. Isoda T., Urushibara I., Umino K., Ishida Y.,and Sato H., “Factors influencing the capillary separation of leukocytes from whole blood in a plastic-based microfluidic chip,”Sensors and Actuators B, 2008. Jiao Z., Nguyen N. T., Huang X., Ang Y. Z., “Reciprocating thermocapillary plug motion in an externally heated capillary,”Microfluids and Nanofluids, 2006, Vol.3, pp.39-46. Lee S. W., Kang J. Y., Lee I. H., Ryu S. S., Kwak S. M., Shin K. S., Kim C., Jung H. I.,and Kim T. S., “Single-cell assay on CD-like lab chip using centrifugal massive single-cell trap,” Sensors and Actuators A, 2008, Vol.143, pp.64-69. Mende M., Hopert A., Wünsche W., Overhoff M., Detzer A., Börngen K., Schlenke P., Kirchner H.,and Sczakiel G., “A hexanucleotide selected for increased cellular uptake in cis contains a highly active CpG-motif in human B cells and primary peripheral blood mononuclear cells,”Immunology, Vol.120, No.261, pp.261-272. Monahan J., Gewirth A. A.,and Nuzzo R. G., “Indirect Fluorescence Detection of Simple Sugars via High-pH Electrophoresis in Poly(dimethylisiloxane) Microfluidic Chips,”Electrophoresis, 2002, Vol.23, pp.2347-2354. Mark D., Haeberle S., Metz T., Lutz S., Ducrée J., and Zengerle R., “Aliquoting Structure for Centrifugal Microfluidics Based on a New Pneumatic Valve,”MEMS 2008, Tucson, AZ, USA, January 13-17, 2008. Prete S. P., Giuliani A., D’Atri S., Graziani G., Balduzzi A., Oggioni M. R., lona E., Girolomoni G., Bonmassar L., Romani L.,and Franzese O., “BCG-infected adherent mononuclear cells release cytokines that regulate group 1 CD1 molecule expression,”International Immunopharmacology, 2007, Vol.7, pp.321-332. Riegger L., Grunmann M., Steigert J., Lutz S., Steinert C. P., Mueller C., Viertal J.,and Prucker O., “Single-step centrifugal hematocrit determination on a 10-$ processing devise,” Biomed Microdevice , 2007, Vol.9, pp.795-799. Steigert J., Breener T., Grunmann M., Riegger L., Lutz S., Zengerle R.,and Ducree J., “Integrated siphon-based metering and sedimentation of whole blood on a hydrophilic lab-on-a-disk,” Biomed Microdevice , 2007, Vol.9, pp. 675-679. Sánchez J., and Aventín A., “Detection of chromosomal abnormalities in chronic lymphocytic leukemia increased by interphase fluorescence in situ hybridization in tetradecanoylphorbol acetate-stimulated peripheral blood cells,”Cancer Genetics and Cytogenetics, 2007 , Vol.175 , pp.57-60. Shevkoplays S. S., Yoshida T., Munn L. L.,and Bitensky M. W., “Biomimetic Autoseparation of Leukocytes from Whole Blood in Microfluidic Device,” Analytical Chemistry, 2005, Vol.77, pp.933-937. Thorsen G., Ekstrand G., Selditz U., Wallenborg R. S.,and Andersson P., “Integated Microfluidics for Parallel Processing of Proteins in a CD Microlaboratory,” Proceedings of 7th International Conference on Miniaturized Chemical and Biochemlcal Analysis System, Squaw Valley, California, USA, October5-9, 2003. Wang Y. N., Kang Y., Xu D., Chon C. H., Barnett L., Kalams S. A., Li D.,and Li D., “On-chip counting the number and percentage of CD4+ T lymphocytes,”Lab Chip, 2008, Vol.8, pp.309-315. 劉奕銑﹐臨床及檢驗診斷﹐合記圖書出版社﹐87年。 蕭聖揚﹐疾病與檢查﹐書泉出版社﹐74年。 白火城、黃森源、林仁壽﹐家畜臨床血液生化學﹐立宇出版社﹐85年。 林明泉﹐臨床血清免疫學﹐藝軒出版社﹐86年。 嚴開杰﹐科式力誘導之旋轉微流體控制:螢光偵測與可視化實驗,國立中興大學碩士論文﹐2007。 陳俊堯﹐旋轉碟片上微小混合器之影像定位與可視化實驗,國立中興大學碩士論文 ,2007。 黃柏鈞﹐旋轉微流道閥門可視化及雷射偵測﹐國立中興大學碩士論文﹐2006
摘要: 
本實驗設計之旋轉微流道生物晶片,可以一次檢測4組檢體,並利用三種實驗機制來達成檢測目的,省去換血片之時間與步驟。本研究以旋轉時產生的離心力驅動血液,探討血液在旋轉微流道晶片上的分離率與血球現象。實驗採用CNC加工PMMA(Polymethyl methacrylate)方式製作實驗晶片,再經由熱壓的方式將晶片結合。流道的設計包含Metering chamber與Observation chamber結構,流道深度分別為100、150與300 μm,寬度則為100至300 μm的範圍。實驗主要觀查晶片上血液在Metering chamber中分離成血漿血球的比率與Observation chamber中血球之型態,同時藉由Hct(Hematocrit)實驗、光學偵測與螢光偵測的方式觀察。Hct實驗則以He-Ne Laser及光二極體同步觸發CCD攝影機擷取影像;光學偵測則以光學顯微鏡觀察影像;螢光偵測則以螢光顯微鏡並搭配旋轉平台與Cooling CCD攝影機擷取影像。本實驗發現,在Hct實驗下晶片的旋轉方向為順時針旋轉,轉速為3000 rpm旋轉時間為3分鐘,此時全血分離成血漿血球的比率可以當作血球容積計來檢測貧血。在螢光偵測時,則是利用濃度為1 mM的螢光染劑在螢光顯微鏡放大150倍下來判定血球是否為活體細胞。在光學偵測時晶片上片厚度必須在0.5 mm才可以觀測到放大400倍的效果,實驗中必需利用DPBS(Dulbecco''s Phosphate buffered Saline without Calcium or Magnesium)溶液將血液稀釋成30倍才可清楚看見血球的形態,利用血球型態則可以檢測肝病與腎病。

This study reports three experiments to detect four specimens all at once in the rotating microfluidic chip. The advantage of the experiments is saving the time and steps of changing blood smears. This experimental study utilizes the centrifugal force for driving the bloodstream to study the human whole blood separation and cells phenomenon in the chip. The testing chip is fabricated on PMMA (Polymethyl methacrylate) using CNC machining and hot plat bonding. The microfluidics of the testing chip structure composed of metering chamber and observation chamber. The channel depths of the chambers were 100, 150 and 300 μm and the wide ranges were 100 to 300 μm. The Hct (Hematocrit) experiment, using optical microscope detection and fluorescence microscope detection, could be used to complete the experiment at the same time. The Hct experiment utilizes He-Ne laser and photodiode to trigger the CCD camera to take the image. When the chip rotated at rotation speed of 3000 rpm clockwise for 3 minutes, the results show the microfluidics can be used as hematocrit to detect anemia. In the detection with fluorescence microscope at 150 X magnifies live cells of blood can be distinguished. At a higher magnification of 400 X, forms of cells can be clearly observed. Under above-mentioned conditions, we could detect the liver complaint, nephropathy and anemia by distinguishing forms of cells in the rotating microfluidic chip.
URI: http://hdl.handle.net/11455/2167
其他識別: U0005-2608200816534000
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.