Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/21730
標題: 利用T-DNA插入突變體探討水稻基因之功能-抗病能力異常突變體M0023454及穀粒發育異常突變體M0039314之特性及基因表現分析
Rice functional genomics study with T-DNA insertion mutants-Characterization and gene expression analysis of a disease susceptible mutant M0023454 and a seed development mutant M0039314
作者: 李彥璇
Li, Yan-Suan
關鍵字: T-DNA;T-DNA;OsMADS45;AP2/EREBP family;Squamosa promoter binding protein;抗病;榖粒發育異常
出版社: 分子生物學研究所
引用: Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M (1998) A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. Embo J 17: 5484-5496 An G, Lee S, Kim S-H, Kim S-R (2005) Molecular Genetics Using T-DNA in Rice 10.1093/pcp/pci502. Plant Cell Physiol. 46: 14-22 Becraft PW, Bongard-Pierce DK, Sylvester AW, Poethig RS, Freeling M (1990) The liguleless-1 gene acts tissue specifically in maize leaf development. Dev Biol 141: 220-232 Birkenbihl RP, Jach G, Saedler H, Huijser P (2005) Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains. J Mol Biol 352: 585-596 Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1: 37-52 Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112: 1-20 Cardon G, Hohmann S, Klein J, Nettesheim K, Saedler H, Huijser P (1999) Molecular characterisation of the Arabidopsis SBP-box genes. Gene 237: 91-104 Cardon GH, Hohmann S, Nettesheim K, Saedler H, Huijser P (1997) Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J 12: 367-377 Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14: 559-574 Colombo L, Franken J, Koetje E, van Went J, Dons HJ, Angenent GC, van Tunen AJ (1995) The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7: 1859-1868 Fang RX, Nagy F, Sivasubramaniam S, Chua NH (1989) Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1: 141-150 Favaro R, Immink RG, Ferioli V, Bernasconi B, Byzova M, Angenent GC, Kater M, Colombo L (2002) Ovule-specific MADS-box proteins have conserved protein-protein interactions in monocot and dicot plants. Mol Genet Genomics 268: 152-159 Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12: 393-404 Greco R, Stagi L, Colombo L, Angenent GC, Sari-Gorla M, Pe ME (1997) MADS box genes expressed in developing inflorescences of rice and sorghum. Mol Gen Genet 253: 615-623 Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB (2002) Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14: 817-831 Guo ZJ, Chen XJ, Wu XL, Ling JQ, Xu P (2004) Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol Biol 55: 607-618 Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7: 465-471 He P, Chintamanani S, Chen Z, Zhu L, Kunkel BN, Alfano JR, Tang X, Zhou JM (2004) Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. Plant J 37: 589-602 Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci U S A 93: 7783-7788 Hur J, Jung K-H, Lee C-H, An G (2004) Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Science 167 IRGSP. (2005) The map-based sequence of the rice genome. Nature 436: 793-800 Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46: 23-47 Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22: 561-570 Jeon JS, Lee S, Jung KH, Yang WS, Yi GH, Oh BG, An G (2000) Production of transonic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Molecular Breeding 6: 581-592 Jeong DH, An S, Kang HG, Moon S, Han JJ, Park S, Lee HS, An K, An G (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130: 1636-1644 Jeong DH, An S, Park S, Kang HG, Park GG, Kim SR, Sim J, Kim YO, Kim MK, Kim J, Shin M, Jung M, An G (2006) Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J 45: 123-132 Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6: 1211-1225 Kang HG, Jang S, Chung JE, Cho YG, An G (1997) Characterization of two rice MADS box genes that control flowering time. Mol Cells 7: 559-566 Kang HG, Jeon JS, Lee S, An G (1998) Identification of class B and class C floral organ identity genes from rice plants. Plant Mol Biol 38: 1021-1029 Kim S, Soltis PS, Wall K, Soltis DE (2006) Phylogeny and domain evolution in the APETALA2-like gene family. Mol Biol Evol 23: 107-120 Klein J, Saedler H, Huijser P (1996) A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol Gen Genet 250: 7-16 Koncz C, Mayerhofer R, Koncz-Kalman Z, Nawrath C, Reiss B, Redei GP, Schell J (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. Embo J 9: 1337-1346 Kunst L, Klenz JE, Martinez-Zapater J, Haughn GW (1989) AP2 Gene Determines the Identity of Perianth Organs in Flowers of Arabidopsis thaliana. Plant Cell 1: 1195-1208 Lannenpaa M, Janonen I, Holtta-Vuori M, Gardemeister M, Porali I, Sopanen T (2004) A new SBP-box gene BpSPL1 in silver birch (Betula pendula). Physiol Plant 120: 491-500 Lee JH, Kim DM, Kim J, Bang JW, Kim WT, Pai HS (2005) Functional characterization of NtCEF1, an AP2/EREBP-type transcriptional activator highly expressed in tobacco callus. Planta 222: 211-224 Lee S, Jung KH, An G, Chung YY (2004) Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene-trap system. Plant Mol Biol 54: 755-765 Lee S, Kim J, Han JJ, Han MJ, An G (2004) Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J 38: 754-764 Lee S, Kim J, Son JS, Nam J, Jeong DH, Lee K, Jang S, Yoo J, Lee J, Lee DY, Kang HG, An G (2003) Systematic reverse genetic screening of T-DNA tagged genes in rice for functional genomic analyses: MADS-box genes as a test case. Plant Cell Physiol 44: 1403-1411 Lee S-C, Kim J-Y, Kim S-H, Kim S-J, Lee K, Han S-K, Choi H-S, Jeong D-H, An G, Kim S-R (2004) Trapping and characterization of cold-responsive genes from T-DNA tagging lines in rice. Plant Science 166: 69-79 Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25: 674-681 Magnani E, Sjolander K, Hake S (2004) From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell 16: 2265-2277 McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible W-R, Udvardi MK, Kazan K (2005) Repressor- and Activator-Type Ethylene Response Factors Functioning in Jasmonate Signaling and Disease Resistance Identified via a Genome-Wide Screen of Arabidopsis Transcription Factor Gene Expression 10.1104/pp.105.068544. Plant Physiol. 139: 949-959 Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8: 4321-4325 Muthukalianan GK, Lee S, Yum H, Ku S, Kwun M, Kang HG, An G, Chung YY (2003) Identification of anther-specific gene expression from T-DNA tagging rice. Mol Cells 15: 102-107 Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140: 411-432 Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2: 186-195 Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7: 173-182 Ohme-Takagi M, Shinshi H (1995) Ethylene-Inducible DNA Binding Proteins That Interact with an Ethylene-Responsive Element 10.1105/tpc.7.2.173. Plant Cell 7: 173-182 Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13: 1959-1968 Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203 Prasad K, Vijayraghavan U (2003) Double-stranded RNA interference of a rice PI/GLO paralog, OsMADS2, uncovers its second-whorl-specific function in floral organ patterning. Genetics 165: 2301-2305 Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110: 513-520 Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379: 633-646 Robbins J, Dilworth SM, Laskey RA, Dingwall C (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64: 615-623 Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290: 998-1009 Sallaud C, Meynard D, van Boxtel J, Gay C, Bes M, Brizard JP, Larmande P, Ortega D, Raynal M, Portefaix M, Ouwerkerk PB, Rueb S, Delseny M, Guiderdoni E (2003) Highly efficient production and characterization of T-DNA plants for rice ( Oryza sativa L.) functional genomics. Theor Appl Genet 106: 1396-1408 Sambrook J, Russell DW (2001) Molecular Cloning. Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D, Lohmann JU (2003) Dissection of floral induction pathways using global expression analysis. Development 130: 6001-6012 Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8: 517-527 Stone JM, Liang X, Nekl ER, Stiers JJ (2005) Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. Plant J 41: 744-754 Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4: 75-85 Unte US, Sorensen AM, Pesaresi P, Gandikota M, Leister D, Saedler H, Huijser P (2003) SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis. Plant Cell 15: 1009-1019 Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436: 714-719 Weigel D (1995) The APETALA2 domain is related to a novel type of DNA binding domain. Plant Cell 7: 388-389 Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Zhou DX, Wang S, Zhang Q (2003) Development of enhancer trap lines for functional analysis of the rice genome. Plant J 35: 418-427 Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Nunokawa E, Ishizuka Y, Terada T, Shirouzu M, Osanai T, Tanaka A, Seki M, Shinozaki K, Yokoyama S (2004) A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors. J Mol Biol 337: 49-63 Yang J, Zhang J (2006) Grain filling of cereals under soil drying. New Phytol 169: 223-236 Zhang Y (2005) The SBP-Box Gene SPL8 Affects Reproductive Development and Gibberellin Response in Arabidopsis. Universitat zu Koln, Mathematisch-Naturwissenschaftliche Fakultat: 1-113 Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136: 2621-2632
摘要: 
In this study, 12 T-DNA insertion mutant lines were selected by their distinct phenotypes in grain development such as sterile, low fertility, abnormal panicles and grains. Only six of these mutants could get flanking sequence by TAIL PCR and plasmid rescue. Among them, only mutants M0023454 and M0039314 showed single insertion event without changes of Tos17 number in their genomes. They were selected for further study. In mutant M0023454, the T-DNA was inserted in the BAC clone of OSJNBa0039C07 in the rice chromosome number 4. This mutant showed more susceptible to the pathogen, and this phenotype was co-segregated with the genotype. The expression of gene 454-10, 987 bp upstream of T-DNA insertion site, was activated in mutant while no expression was detected in TNG67. Gene 454-10, encode an AP2 domain, is belong to the AP2/ERF family and much more similar to ERFBP group, which involved in pathogen resistant pathway. This study suggests that the susceptible phenotype to pathogen in mutant M0023454 may be due to the overexpression of gene 454-10. In mutant M0039314, the T-DNA was inserted in the PAC clone of P0702E04 in the rice chromosome number 8. Mutant M0039314 showed abnormal phenotypes, such as dark green leaves, irradiative tillers, low fertility, incomplete seed development, weaker anthers and reduced length of panicle and peduncle. Almost all of these abnormal phenotypes were co-segregated with the genotypes. The expression of gene 314-5 and 314-6, flanked at both side of T-DNA inserted site, were activated in mutant M0039314 while no expression was detected in TNG67. Gene 314-5 encodes a putative transcription factor, SBP, and expressed weakly in all vegetative tissues but strongly in the reproductive tissues in TNG67. Gene 314-6, an OsMADS45 gene, has been published and showed mainly expressed in the reproductive tissues in TNG67. The results of this study suggest that the abnormal phenotypes in mutant M0039314 may be due to the overexpression of gene 314-5 and 314-6. In order to confirm the abnormal phenotypes of M0023454 and M0039314 are really caused by the overexpression of 454-10, 314-5 and 314-6 and to find out the exact function of these genes, the transgenic lines with overexpression of these genes will be created.

本研究自田間約6,000株的T-DNA插入突變株中,篩選穀粒完全不稔實、稔實率較低、穗發育特異或榖粒外型特異等與水稻榖粒發育相關的突變株,共12株系。利用質體救援或Thermal asymmetric interlaced PCR的方法,共六突變株獲得T-DNA所插入鄰近序列,由南方墨點法結果顯示其中M0023454及M0039314兩株突變株為單一T-DNA插入所致。進一步分析其後代的基因型與農藝性狀間的遺傳模式,發現有共分離的現象。M0023454突變株具有易遭病菌感染的特性,其中T-DNA插入於水稻第4對染色體OSJNBa0039C07 BAC上之113711 bp位置,經由逆轉錄酶連鎖反應分析,T-DNA的插入,可活化插入點上游987 bp處編號454-10基因的表現量。經分析發現,454-10在葉及種子發育過程中有微量的表現,而在5天的根部組織及誘導15天的癒傷組織中有大量的表現。經胺基酸比對分析,454-10蛋白內含有AP2活性區域,歸類在AP2/ERF家族基因中的ERF類,主要參與調控抵抗病菌入侵的生理反應,與阿拉伯芥中的RAP2.6最相似。因此推測454-10的大量表現可能造成植株抵抗病菌能力產生變異。M0039314突變株具有:稻桿外擴、穗型直立、花梗及穗長較短、花藥發育異常、稔實率低及種子發育不完全等特異的農藝性狀;其中T-DNA插入於水稻第8對染色體編號P0702E04 PAC的48951 bp的位置,經由逆轉錄酶連鎖反應分析,T-DNA的插入,可活化上游314-5及下游314-6兩個基因的表現量。經分析發現,314-5在營養生長組織有持續微弱的表現,在生殖生長組織中則有大量的表現,而314-6在生殖生長組織中偵測到大量表現。進一步將314-5及314-6的胺基酸序列進行比對分析,314-5蛋白含有一個植物特有且具轉錄因子特性的SBP活性區域;314-6則為水稻中已發表的OsMADS45。由M0039314突變株的農藝性狀,推測314-5及314-6的大量表現可能會影響穗、花器及種子的型態。M0023454及M0039314突變株所觀察到之特異農藝性狀是否確實因為454-10或314-5、314-6基因活化大量表現所導致,仍須進一步針對回復株作探討。
URI: http://hdl.handle.net/11455/21730
其他識別: U0005-1008200615252600
Appears in Collections:分子生物學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.