Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/21739
標題: PAX3與染色質及其交互作用蛋白之分析
Studies of PAX3 on chromatin association and its associated proteins
作者: 曾逸欣
Tzeng, Yee-Hsing
關鍵字: 染色質;PAX3;抑制轉錄;hSIRT1;Ku70;Ku80;PARP1;chromatin;M phase;transcription factor
出版社: 分子生物學研究所
引用: Auerbach R. (1954) Analysis of the developmental effects of a lethal mutation in the house mouse. J. Exp. Zool. 127, 305-329 . Balczarek K.A., Lai Z.C. and Kumar S. (1997) Evolution of functional diversification of the paired box (Pax) DNA-binding domains. Mol Biol Evol. 14, 829-842. Bannister A.J., Zegerman P., Partridge J.F., Miska E.A., Thomas J.O., Allshire R.C. and Kouzarides T. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature. 410, 120-124. Barr F.G., Galili N., Holick J., Biegel J.A., Rovera G. and Emanuel B.S. (1993) Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet. 3, 113-117. Bennicelli J.L., Fredericks W.J., Wilson R.B., Rauscher F.J. 3rd and Barr F.G. (1995) Wild type PAX3 protein and the PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma contain potent, structurally distinct transcriptional activation domains. Oncogene. 11, 119-130. Berube N.G., Smeenk C.A. and Picketts D.J. (2000) Cell cycle-dependent phosphorylation of the ATRX protein correlates with changes in nuclear matrix and chromatin association. Hum Mol Genet. 9, 539-547. Borycki A.G., Li J., Jin F., Emerson C.P. and Epstein J.A. (1999) Pax3 functions in cell survival and in pax7 regulation. Development. 126, 1665-1674. Burke L.J., Zhang R., Bartkuhn M., Tiwari V.K., Tavoosidana G., Kurukuti S., Weth C., Leers J., Galjart N., Ohlsson R. and Renkawitz R. (2005) CTCF binding and higher order chromatin structure of the H19 locus are maintained in mitotic chromatin. EMBO J. 24, 3291-3300. Cao R., Wang L., Wang H., Xia L., Erdjument-Bromage H., Tempst P., Jones R.S. and Zhang Y. (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 298, 1039-1043. Chalepakis G., Jones F.S., Edelman G.M. and Gruss P. (1994) Pax-3 contains domains for transcription activation and transcription inhibition. Proc Natl Acad Sci U S A. 91, 12745-12749. Chiarugi A. (2002) Poly(ADP-ribose) polymerase: killer or conspirator? The ''suicide hypothesis'' revisited. Trends Pharmacol Sci. 23, 122-129. Cuthbert G.L., Daujat S., Snowden A.W., Erdjument-Bromage H., Hagiwara T., Yamada M., Schneider R., Gregory P.D., Tempst P., Bannister A.J. and Kouzarides T. (2004) Histone deimination antagonizes arginine methylation. Cell. 118, 545-553. Dantzer F., Luna L., Bjoras M. and Seeberg E. (2002) Human OGG1 undergoes serine phosphorylation and associates with the nuclear matrix and mitotic chromatin in vivo. Nucleic Acids Res. 30, 2349-2357. Dey A., Ellenberg J., Farina A., Coleman A.E., Maruyama T., Sciortino S., Lippincott-Schwartz J. and Ozato K. (2000) A bromodomain protein, MCAP, associates with mitotic chromosomes and affects G(2)-to-M transition. Mol Cell Biol. 20, 6537-6549. Forsberg E.C. and Bresnick E.H. (2001) Histone acetylation beyond promoters: long-range acetylation patterns in the chromatin world. Bioessays. 23, 820-830. Glardon S., Callaerts P., Halder G. and Gehring W.J. (1997) Conservation of Pax-6 in a lower chordate, the ascidian Phallusia mammillata. Development. 124, 817-825. Grozinger C.M., Hassig C.A. and Schreiber S.L. (1999) Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci U S A. 96, 4868-4873. Grunstein M. (1997) Histone acetylation in chromatin structure and transcription. Nature. 389, 349-352. Imai S., Armstrong C.M., Kaeberlein M. and Guarente L. (2000) Transcriptional silencing and longevity protein hSIRT1 is an NAD-dependent histone deacetylase. Nature. 403, 795-800. Jacobs S.A., Taverna S.D., Zhang Y., Briggs S.D., Li J., Eissenberg J.C., Allis C.D. and Khorasanizadeh S. (2001) Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J. 17, 5232-5241. Ju B.G., Lunyak V.V., Perissi V., Garcia-Bassets I., Rose D.W., Glass C.K. and Rosenfeld M.G. (2006) A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 312, 1798-1802. Kanai M., Uchida M., Hanai S., Uematsu N., Uchida K. and Miwa M. (2000) Poly(ADP-ribose) polymerase localizes to the centrosomes and chromosomes. Biochem Biophys Res Commun. 278, 385-389. Kirmizis A., Bartley S.M., Kuzmichev A., Margueron R., Reinberg D., Green R. and Farnham P.J. (2004) Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev. 18, 1592-1605. Koike M. (2002) Dimerization, translocation and localization of Ku70 and Ku80 proteins. J Radiat Res (Tokyo). 43, 223-236. Kraus W.L. and Lis J.T. (2003) PARP goes transcription. Cell. 113, 677-683. Kuzmichev A., Nishioka K., Erdjument-Bromage H., Tempst P. and Reinberg D. (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16, 2893-2905. Lai J.S. and Herr W. (1992) Ethidium bromide provides a simple tool for identifying genuine DNA-independent protein associations. Proc Natl Acad Sci U S A. 89, 6958-6962. Lang D., Lu M.M., Huang L., Engleka K.A., Zhang M., Chu E.Y., Lipner S., Skoultchi A., Millar S.E. and Epstein J.A. (2005) Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature. 433, 884-887. Liem K.F. Jr, Tremml G., Roelink H. and Jessell T.M. (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell. 82, 969-979. Long J., Wang G., Matsuura I., He D. and Liu F. (2004) Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3). Proc Natl Acad Sci U S A. 101, 99-104. Machado A.F., Martin L.J. and Collins M.D. (2001) Pax3 and the splotch mutations: structure, function, and relationship to teratogenesis, including gene-chemical interactions. Curr Pharm Des. 7, 751-785. Martin C. and Zhang Y. (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 6, 838-849. Matsuda E., Agata Y., Sugai M., Katakai T., Gonda H. and Shimizu A. (2001) Targeting of Kruppel-associated box-containing zinc finger proteins to centromeric heterochromatin. Implication for the gene silencing mechanisms. J Biol Chem. 276, 14222-14229. Merlino G. and Helman L.J. (1999) Rhabdomyosarcoma-working out the pathways. Oncogene. 18, 5340-5348. Miller D.J., Hayward D.C., Reece-Hoyes J.S., Scholten I., Catmull J., Gehring W.J., Callaerts P, Larsen JE and Ball EE. (2000) Pax gene diversity in the basal cnidarian Acropora millepora (Cnidaria, Anthozoa): implications for the evolution of the Pax gene family. Proc Natl Acad Sci U S A. 97, 4475-4480. Pacher P., Liaudet L., Bai P., Virag L., Mabley J.G., Hasko G. and Szabo C. (2002) Activation of poly(ADP-ribose) polymerase contributes to development of doxorubicin-induced heart failure. J Pharmacol Exp Ther. 300, 862-867. Peters H., Wilm B., Sakai N., Imai K., Maas R. and Balling R. (1999) Pax1 and Pax9 synergistically regulate vertebral column development. Development. 126, 5399-5408. Shi Y., Lan F., Matson C., Mulligan P., Whetstine J.R., Cole P.A., Casero R.A. and Shi Y. (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 119, 941-953. Urbanek P., Fetka I., Meisler M.H. and Busslinger M. (1997) Cooperation of Pax2 and Pax5 in midbrain and cerebellum development. Proc Natl Acad Sci U S A. 94, 5703-5708. Vaziri H., Dessain S.K., Ng Eaton E., Imai S.I., Frye R.A., Pandita T.K., Guarente L. and Weinberg R.A. (2001) hSIRT1 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 107, 149-159. Walther C., Guenet J.L., Simon D., Deutsch U., Jostes B., Goulding M.D., Plachov D., Balling R. and Gruss P. (1991) Pax: a murine multigene family of paired box-containing genes. Genomics. 11, 424-434. Wang Y., Wysocka J., Sayegh J., Lee Y.H., Perlin J.R., Leonelli L., Sonbuchner L.S., McDonald C.H., Cook R.G., Dou Y., Roeder R.G., Clarke S., Stallcup M.R., Allis C.D. and Coonrod S.A. (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science. 306, 279-283. Wiggan O., Taniguchi-Sidle A. and Hamel P.A. (1998) Interaction of the pRB-family proteins with factors containing paired-like homeodomains. Oncogene. 16, 227-236. Wu M.H. and Yung B.Y. (2002) UV stimulation of nucleophosmin/B23 expression is an immediate-early gene response induced by damaged DNA. J Biol Chem. 277, 48234-48240. Yang Y., Hou H., Haller E.M., Nicosia S.V. and Bai W. (2005) Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J. 9, 1021-1032. Zhang Y. and Emmons S.W. (1995) Specification of sense-organ identity by a Caenorhabditis elegans Pax-6 homologue. Nature. 377, 55-59. Cheng Li-Lien. (2005) Mechanistic studies of ZFP42 in transcriptional regulation. Institue of Molecular Biology/National Chung Hsing University Master Thesis. Chen Nai-Tzu. (2006) The molecular mechanism of STAF65 in transcriptional regulation. Institue of Molecular Biology/National Chung Hsing University Master Thesis. Hsieh Mei-Ju. (2003) Mechanistic studies of PAX3 transcription repress activity. Institue of Molecular Biology/National Chung Hsing University Master Thesis. Lin Tung-Ping. (2004) Studies of HDAC10 and its associated factors. Institue of Molecular Biology/National Chung Hsing University Master Thesis.
摘要: 
PAX3 regulates gene transcription during normal development of neurons and somatic muscles. However, how PAX3 regulates gene expression remains unknown. It is known that chromatin structure influences gene expression and can be altered by post-translational modification of histones, such as deacetylation or methylation. In this thesis, we focused on how PAX3 repressional activity is regulated through deacetylation or methylation, the possible function of the PAX3's stable complex with Ku80 and PARP1, and the mitotic chromosome association of PAX3.

(1) Histone modification: Co-immunoprecipition assays showed that PAX3 interacted with hSIRT1, EZH1 and SETDB1 but not with EZH2, M33, hPC2 and LSD1. hSIRT1 also interacted with acetylated PAX3 regardless of the presence or absence of NAM, which was an inhibitor of hSIRT1 enzymatic activity. Transcriptional assays showed that knocking-down hSIRT1 expression by siRNA could derepress PAX3's repressional activity. Over expressed hSIRT1, EZH1, SETDB1 or NAM treatment had no effect in PAX3's repressional activity. hSIRT1 couldn't affect PAX3 cellular localization. (2) PAX3 stable complex: PAX3 interacted with Ku80 and also Ku70 via PD and HD regions. PAX3, Ku80 and Ku70 form a ternary complex. Overexpression of Ku did not affect in PAX3's transcriptional activity or localization. Overexpression of PARP1 could slightly derepress PAX3 on the N-CAM promoter. PARP activation by NAD+ or inhibition by 3AB did not affect PAX3 on its transcriptional activity or localization. ChIP assays revealed that PARP1 was targeted to the N-CAM promoter through PAX3, but Ku80 bound consistently. (3) Chromatin association: DAPI staining revealed that PAX3 co-localized with chromosomes during M phase, but PD, HD or PAX3-FKHR partially did. PAX3 existed in isolated chromatin fraction. GST pull-down assays showed that PAX3 interacted with histones. PARP1, which interacted with PAX3, showed similar co-localization with chromatin during M phase. hSIRT1, Ku70 and Ku80 did not show such localization pattern.

These results suggest that (1) PAX3 interacts with hSIRT1 and represses transcription without deacetylation activity of hSIRT1. (2) PAX3 interacts with Ku, but Ku does not affect PAX3's transcription or cellular localization. (3) PAX3 shows a specific localization patterns in M phase which is different from that of PAX3-FKHR.

PAX3轉錄因子在生物胚胎時期可調控下游基因的表現使神經和體節肌肉正常發育,本研究室也發現PAX3具有調控轉錄的功能,但PAX3如何能調控轉錄活性的機制目前仍不清楚。目前已知組蛋白可藉由去乙醯化和甲基化使染色質結構變得更為緊密並抑制轉錄的發生,為了瞭解PAX3是否藉由組蛋白後修飾作用調控轉錄的發生,本論文探討PAX3與組蛋白的修飾作用關係。為了尋找PAX3其它的新功能,本實驗室在PAX3蛋白複合體中發現Ku80和PARP1,本論文也分析這兩種蛋白與PAX3作用有何意義?先前研究已顯示PAX3與染色質有密切的關係,本論文也探討PAX3和染色質的作用意義。

(1) 組蛋白修飾作用: Co-immunoprecipition (Co-IP) 實驗證明PAX3可和hSIRT1、EZH1、SETDB1作用,而不會與EZH2、M33、hPC2、LSD1作用。hSIRT1酵素活性並不影響與PAX3的分子作用。以hSIRT1 siRNA降低hSIRT1表現量可減弱PAX3抑制轉錄能力,但hSIRT1不影響PAX3在細胞中的分佈位置。 (2) PAX3蛋白複合體: Co-IP實驗和GST pull down assay可證明PAX3確實與Ku作用,並且PAX3、Ku70和Ku80可形成ternary complex。在PAX3轉錄功能方面,增加Ku70、Ku80的表現量不影響PAX3的轉錄活性,而增加PARP1則可稍微減弱PAX3在N-CAM promoter的抑制作用,並發現PARP酵素活性與PAX3抑制轉錄的能力無關。此外,以UV irradiation或Doxorubicin造成DNA damage則可分別降低或增強Gal4-PAX3的抑制活性,但不影響PAX3在N-CAM promoter的抑制活性。在PAX3細胞分佈功能,發現PAX3和Ku70、Ku80、PARP1不會互相影響細胞中的分佈位置,以 UV irradiation、Doxorubicin處理也不影響PAX3在細胞中的位置。在promoter結合能力,以chromatin immunoprecipition assay證明PAX3可増加PARP1在N-CAM promoter的結合能力,Ku80則不受影響。 (3) 染色質作用關係: PAX3在細胞分裂時可發現與染色體有相同的分佈,並利用GST pull down實驗證明PAX3可與組蛋白直接作用,PAX3-FKHR融合蛋白與染色質分佈以及與組蛋白作用的能力明顯降低。觀察其它PAX3作用蛋白在細胞分裂時的分佈位置,發現PARP1也可分佈於染色質區域,hSIRT1、Ku70、Ku80則無此分佈。

本篇研究主要發現PAX3可藉由hSIRT1與PARP1作用調控轉錄活性,而此作用與hSIRT1和PARP1的酵素活性無關。另外發現PAX3在M phase時期與染色體有共同分佈以及PAX3和組蛋白的分子作用並且也發現PAX3-FKHR喪失此功能。
URI: http://hdl.handle.net/11455/21739
其他識別: U0005-1807200622392100
Appears in Collections:分子生物學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.