Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/21768
標題: Screening of strong promoters from corynephage P1201 for the construction of expression vectors used in the Corynebacterium glutamicum
篩選噬菌體P1201強勢啟動子俾應用於構築Corynebacterium glutamicum之表現載體
作者: 邱堃睿
Chiu, Kun-Reui
關鍵字: 噬菌體;Phage;味精生產菌;啟動子;Corynebacterium glutamicum;Promoter
出版社: 分子生物學研究所
引用: 1.蘇遠志。(1973)麩胺酸發酵 31-40,天然書社 台北。 2.朱文深、 許文輝。(1985) Coryneform bacteria – E. coli 基因傳遞載體之建立。Brevibacterium lactofermentum所含質體之分離與研究。食品工業發展研究所 研究報告 第398號. 3.朱文深、 許文輝。(1986)Coryneform bacteria – E. coli 基因傳遞載體之建立。 食品工業發展研究所 研究報告 第430號。 4.蔡世昌、 廖啟成、 許文輝。(1992)食品工業發展研究所 研究報告 第 674號。 5.潘志龍。(1997) Corynebacterium glutamicum DAHP synthase 與 Prephenate dehydratase 之間的蛋白質交互作用。碩士論文,分子生物研究所,中興,台中。 6.Balu, B., and J. H. Adams. 2003. Fluorescent chloramphenicol as a substitute for radioactive [14C]-chloramphenicol for CAT reporter assays in Plasmodium falciparum. Mol Biochem Parasitol 126:285-6. 7.Becker, W. M., J. B.Reece, and M. F. Poenine. 1995. Gene expression:II. Protein sythesis and sorting.569-598. 8.Casjens, S. R. 2005. Comparative genomics and evolution of the tailed-bacteriophages. Curr Opin Microbiol 8:451-8. 9.Chan, M. S., and W. H. Hsu. 1996. Cloning of m-fluorophenylalanine-resistant gene and mutational analysis of feedback-resistant prephenate dehydratase from Corynebacterium glutamicum. Biochem Biophys Res Commun 219:537-42. 10.Coburn, G. A., and G. A. Mackie. 1996. Differential sensitivities of portions of the mRNA for ribosomal protein S20 to 3''-exonucleases dependent on oligoadenylation and RNA secondary structure. J Biol Chem 271:15776-81. 11.Coburn, G. A., and G. A. Mackie. 1996. Overexpression, purification, and properties of Escherichia coli ribonuclease II. J Biol Chem 271:1048-53. 12.Coburn GA, M. G. 1999. Degradation of mRNA in Escherichia coli: an old problem with some new twists. Prog Nucleic Acid Res Mol Biol. 62:55-108. 13.Cohen, S. N., and K. J. McDowall. 1997. RNase E: still a wonderfully mysterious enzyme. Mol Microbiol 23:1099-106. 14.Conway, J. F., R. L. Duda, N. Cheng, R. W. Hendrix, and A. C. Steven. 1995. Proteolytic and conformational control of virus capsid maturation: the bacteriophage HK97 system. J Mol Biol 253:86-99. 15.Cordes, C., R. Meima, B. Twiest, B. Kazemier, G. Venema, J. M. van Dijl, and S. Bron. 1996. The expression of a plasmid-specified exported protein causes structural plasmid instability in Bacillus subtilis. J Bacteriol 178:5235-42. 16.Deane, E. E., J. M. Whipps, J. M. Lynch, and J. F. Peberdy. 1999. Transformation of Trichoderma reesei with a constitutively expressed heterologous fungal chitinase gene. 24:419-424. 17.DeHaseth, P. L., M. L. Zupancic, and M. T. Record, Jr. 1998. RNA polymerase-promoter interactions: the comings and goings of RNA polymerase. J Bacteriol 180:3019-25. 18.Delaunay, S., D. Uy, M. F. Baucher, J. M. Engasser, A. Guyonvarch, and J. L. Goergen. 1999. Importance of phosphoenolpyruvate carboxylase of Corynebacterium glutamicum during the temperature triggered glutamic acid fermentation. Metab Eng 1:334-43. 19.Duda, R. L., K. Martincic, Z. Xie, and R. W. Hendrix. 1995. Bacteriophage HK97 head assembly. FEMS Microbiol Rev 17:41-6. 20.Eckhardt, T., J. Strickler, L. Gorniak, W. V. Burnett, and L. R. Fare. 1987. Characterization of the promoter, signal sequence, and amino terminus of a secreted beta-galactosidase from "Streptomyces lividans". J Bacteriol 169:4249-56. 21.Gentz, R., and H. Bujard. 1985. Promoters recognized by Escherichia coli RNA polymerase selected by function: highly efficient promoters from bacteriophage T5. J Bacteriol 164:70-7. 22.Giladi, H., D. Goldenberg, S. Koby, and A. B. Oppenheim. 1995. Enhanced activity of the bacteriophage lambda PL promoter at low temperature. FEMS Microbiol Rev 17:135-40. 23.Gilbert, M., R. Morosoli, F. Shareck, and D. Kluepfel. 1995. Production and secretion of proteins by streptomycetes. Crit Rev Biotechnol 15:13-39. 24.Gourdon, P., M. F. Baucher, N. D. Lindley, and A. Guyonvarch. 2000. Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism. Appl Environ Microbiol 66:2981-7. 25.Grunberg-Manago, M. 1999. Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu Rev Genet 33:193-227. 26.Hannig, G., and S. C. Makrides. 1998. Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol 16:54-60. 27.Haynes, J. A. a. M. L. B. 1990. The effect of growth condition of Corynebacterium glutamicum on the transformation frequence obtained by electroporation. J. Gen. Microbiol. 136:255-263. 28. Hermann, T., W. Pfefferle, C. Baumann, E. Busker, S. Schaffer, M. Bott, H. Sahm, N. Dusch, J. Kalinowski, A. Puhler, A. K. Bendt, R. Kramer, and A. Burkovski. 2001. Proteome analysis of Corynebacterium glutamicum. Electrophoresis 22:1712-23. 29.Hofschneider P. H., a. W. G. 1982. Gene Cloning in Organisms Other Than E. coli, in Current Topics in Microbiology and Immunology. 30.Hopwood, D. D., M. T. Bibb., K. F. Chater., T. Kisser., C. J. Bruton., H. M. Kisser., D. L. Lydiate., C. P. Smith, and J. M. Ward. 1985. Genetic Manipulation of Streptomyces. 31.Ikeda, M., and S. Nakagawa. 2003. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99-109. 32.Isobe, T., L. W. Black, and A. Tsugita. 1976. Protein cleavage during virus assembly: a novel specificity of assembly dependent cleavage in bacteriophage T4. Proc Natl Acad Sci U S A 73:4205-9. 33.Ivanov, I., J. Rommens, A. Sarafova, V. Maximova, A. Usheva, S. Bardarov, A. Papageorgiou, and E. Jay. 1990. Chemical synthesis and characteristics of a hybrid phage T5-lac promoter. Microbiologica 13:85-90. 34.Jardine, P. J., M. C. McCormick, C. Lutze-Wallace, and D. H. Coombs. 1998. The bacteriophage T4 DNA packaging apparatus targets the unexpanded prohead. J Mol Biol 284:647-59. 35.Jetten, M. S., and A. J. Sinskey. 1995. Recent advances in the physiology and genetics of amino acid-producing bacteria. Crit Rev Biotechnol 15:73-103. 36.Juhala, R. J., M. E. Ford, R. L. Duda, A. Youlton, G. F. Hatfull, and R. W. Hendrix. 2000. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J Mol Biol 299:27-51. 37.Kawaguchi, H., A. A. Vertes, S. Okino, M. Inui, and H. Yukawa. 2006. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:3418-28. 38.Kingsman, S. M., A. J. Kingsman, M. J. Dobson, J. Mellor, and N. A. Roberts. 1985. Heterologous gene expression in Saccharomyces cerevisiae. Biotechnol Genet Eng Rev 3:377-416. 39.Koptides, M., I. Barak, M. Sisova, E. Baloghova, J. Ugorcakova, and J. Timko. 1992. Characterization of bacteriophage BFK20 from Brevibacterium flavum. J Gen Microbiol 138:1387-91. 40.Koptides, M., J. Ugorcakova, E. Baloghova, G. Bukovska, and J. Timko. 1994. Characterization and sequence analysis of the F2 promoter from corynephage BFK20. Acta Virol 38:223-8. 41.Labrie, S., and S. Moineau. 2002. Complete genomic sequence of bacteriophage ul36: demonstration of phage heterogeneity within the P335 quasi-species of lactococcal phages. Virology 296:308-20. 42.Liao, H. F., L. L. Lin, H. R. Chien, and W. H. Hsu. 2001. Serine 187 is a crucial residue for allosteric regulation of Corynebacterium glutamicum 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase. FEMS Microbiol Lett 194:59-64. 43.Lin, L. L., H. F. Liao, H. R. Chien, and W. H. Hsu. 2001. Identification of essential cysteine residues in 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Corynebacterium glutamicum. Curr Microbiol 42:426-31. 44.Liu, J., and A. Mushegian. 2004. Displacements of prohead protease genes in the late operons of double-stranded-DNA bacteriophages. J Bacteriol 186:4369-75. 45.Lubbers, M. W., N. R. Waterfield, T. P. Beresford, R. W. Le Page, and A. W. Jarvis. 1995. Sequencing and analysis of the prolate-headed lactococcal bacteriophage c2 genome and identification of the structural genes. Appl Environ Microbiol 61:4348-56. 46.Mackie, G. A. 1998. Ribonuclease E is a 5''-end-dependent endonuclease. Nature 395:720-3. 47.Mackie, G. A., and J. L. Genereaux. 1993. The role of RNA structure in determining RNase E-dependent cleavage sites in the mRNA for ribosomal protein S20 in vitro. J Mol Biol 234:998-1012. 48.Mackie, G. A., J. L. Genereaux, and S. K. Masterman. 1997. Modulation of the activity of RNase E in vitro by RNA sequences and secondary structures 5'' to cleavage sites. J Biol Chem 272:609-16. 49.Magasanik, B. 1982. Genetic control of nitrogen assimilation in bacteria. Annu Rev Genet 16:135-68. 50.Makrides, S. C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60:512-38. 51.McLaren RS, N. S., Dance GS, Causton HC, Higgins CF. 1991. mRNA degradation by processive 3''-5'' exoribonucleases in vitro and the implications for prokaryotic mRNA decay in vivo. Mol Biol. 221(1):81-95. 52.Meijer, W. J., and M. Salas. 2004. Relevance of UP elements for three strong Bacillus subtilis phage phi29 promoters. Nucleic Acids Res 32:1166-76. 53.Merkamm, M., and A. Guyonvarch. 2001. Cloning of the sodA gene from Corynebacterium melassecola and role of superoxide dismutase in cellular viability. J Bacteriol 183:1284-95. 54.Moreau, S., V. Leret, C. Le Marrec, H. Varangot, M. Ayache, S. Bonnassie, C. Blanco, and A. Trautwetter. 1995. Prophage distribution in coryneform bacteria. Res Microbiol 146:493-505. 55.Nicholson, A. W. 1999. Function, mechanism and regulation of bacterial ribonucleases. FEMS Microbiol Rev 23:371-90. 56.Nierlich, D. P., and G. J. Murakawa. 1996. The decay of bacterial messenger RNA. Prog Nucleic Acid Res Mol Biol 52:153-216. 57.Nogueira, T., and M. Springer. 2000. Post-transcriptional control by global regulators of gene expression in bacteria. Curr Opin Microbiol 3:154-8. 58.Pan, T.-Y. 2002. Development of Corynebacterium glutamicum expression vectors for the high-level expression of heterologous genes. 59.Patek, M., J. Nesvera, A. Guyonvarch, O. Reyes, and G. Leblon. 2003. Promoters of Corynebacterium glutamicum. J Biotechnol 104:311-23. 60.Pines, O., and M. Inouye. 1999. Expression and secretion of proteins in E. coli. Mol Biotechnol 12:25-34. 61.Puhler, A., and A. Tauch. 2003. A new era in Corynebacterium glutamicum biotechnology. J Biotechnol 104:1-3. 62.Purvis, I. J., L. Loughlin, A. J. Bettany, and A. J. Brown. 1987. Translation and stability of an Escherichia coli beta-galactosidase mRNA expressed under the control of pyruvate kinase sequences in Saccharomyces cerevisiae. Nucleic Acids Res 15:7963-74. 63.Rauhut, R., and G. Klug. 1999. mRNA degradation in bacteria. FEMS Microbiol Rev 23:353-70. 64.Rivera, M. J., M. A. Smits, W. Quint, J. G. Schoenmakers, and R. N. Konings. 1978. Expression of bacteriophage M13 DNA in vivo. Localization of the transcription initiation and termination signal of the mRNA coding for the major capsid protein. Nucleic Acids Res 5:2895-912. 65.Ross, W., S. E. Aiyar, J. Salomon, and R. L. Gourse. 1998. Escherichia coli promoters with UP elements of different strengths: modular structure of bacterial promoters. J Bacteriol 180:5375-83. 66.Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a labratory manual. 67.Sarah E. Aiyar, R. L. G., and Wilma Ross*. 1998. Upstream A-tracts increase bacterial promoter activity through interactions with the RNA polymerase α subunit. Proc. Natl. Acad. Sci. USA 95:14652-14657. 68.Sarkis, G. J., W. R. Jacobs, Jr., and G. F. Hatfull. 1995. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol Microbiol 15:1055-67. 69.Shiba, Y., C. Ono, F. Fukui, I. Watanabe, N. Serizawa, K. Gomi, and H. Yoshikawa. 2001. High-level secretory production of phospholipase A1 by Saccharomyces cerevisiae and Aspergillus oryzae. Biosci Biotechnol Biochem 65:94-101. 70.Snustad, D. P., M. J. Simmouons, and J. B. Jenkins. 1997. Transcription and RNA processing. In principle of genetics.248-280. 71.Sorensen, K. I., R. Larsen, A. Kibenich, M. P. Junge, and E. Johansen. 2000. A food-grade cloning system for industrial strains of Lactococcus lactis. Appl Environ Microbiol 66:1253-8. 72.Spickler, C., and G. A. Mackie. 2000. Action of RNase II and polynucleotide phosphorylase against RNAs containing stem-loops of defined structure. J Bacteriol 182:2422-7. 73.Srivastava, P., and J. K. Deb. 2002. Construction of fusion vectors of corynebacteria: expression of glutathione-S-transferase fusion protein in Corynebacterium acetoacidophilum ATCC 21476. FEMS Microbiol Lett 212:209-16. 74.Srivastava, P., and J. K. Deb. 2005. Gene expression systems in corynebacteria. Protein Expr Purif 40:221-9. 75.Tabor, S., and C. C. Richardson. 1985. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A 82:1074-8. 76.Takahashi, T., N. Yabe, and Y. Komeda. 1993. Expression in yeast of a fusion gene composed of the promoter of a heat-shock gene from Arabidopsis and a bacterial gene for beta-glucuronidase. Plant Cell Physiol 34:161-4. 77.Tang, G. Q., R. P. Bandwar, and S. S. Patel. 2005. Extended upstream A-T sequence increases T7 promoter strength. J Biol Chem 280:40707-13. 78.Trautwetter, A., C. Blanco, and S. Bonnassie. 1987. Characterization of the corynebacteriophage CG33. J Gen Microbiol 133:2945-52. 79.Van der Rest, M. E., C. Lange, and D. Molenaar. 1999. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52:541-545. 80.Voskuil, M. I., and G. H. Chambliss. 1998. The -16 region of Bacillus subtilis and other gram-positive bacterial promoters. Nucleic Acids Res 26:3584-90. 81.Wosten, M. M. 1998. Eubacterial sigma-factors. FEMS Microbiol Rev 22:127-50. 82.Wu, Z. R., B. J. Qi., R. Q. Jiao, F. D. Chen, and.L. F. Wang. 1991. Development of a novel Bacillus subtilis cloning system employing its neutral protease as screen marker. Gene 106:103-107. 83.Yang, V. W., J. A. Marks, B. P. Davis, and T. W. Jeffries. 1994. High-efficiency transformation of Pichia stipitis based on its URA3 gene and a homologous autonomous replication sequence, ARS2. Appl Environ Microbiol 60:4245-54. 84.Yu, Y. A., A. A. Szalay, G. Wang, and K. Oberg. 2003. Visualization of molecular and cellular events with green fluorescent proteins in developing embryos: a review. Luminescence 18:1-18.
摘要: 
Corynebacterium glutamicum is generally recognized as nonhazardous organism, which is safe to handle. Based on its extremely well investigated central metabolism and well-established molecular biology tools, C. glutamicum may be very suitable as an organism for the expression of heterologous gene in high (G+C) bacteria. Promoter regions from putative ORFs of corynebacteriophage P1201 were cloned into 5' end of reporter cat gene and then transformed into C. glutamicum. Promoters from the genes corresponding to ORF 24 and ORF 29 showed CAT specific activities of cat enzyme was 7.17 and 8.17 U/mg protein, repectively. DNA fragments of Sau3AI digested corynephage P1201 genomic DNA were also cloned into pORC, a promoter probed vector, with cat as a reporter gene. P'1,P'2,and P'3 fragments show cat enzymes with specific activities of 8.67, 6.28 and 3.50 U / mg protein repectively, were obtained which are higher than that of trc promoter from E.coli and gdh promoter from C. glutamicum glutamate dehydrogenase gene. Corynephage P1201 structural proteins including portal protein, tail protein, and head protein were found by SDS-PAGE analysis, LC/MS/MS analysis, and N-terminal amino acid sequencing. Putative head protein from ORF 39 exhibited different mobility in SDS-PAGE analysis indicating that proteolytic cleavge might be involved in the maturation of phage capsid protein.

由於 Corynebacterium glutamicum 被認定為安全的微生物,在工業操作上相當的方便。而且其代謝調控已有深入研究,基因操作系統也已建立,此菌可能非常適合使用於高 (G+C) 外源基因之大量表現。本研究選殖glutamate dehydrogenase 基因 (簡稱gdh)之啟動子區及trc啟動子於報導基因cat的 5’ 端,並轉形至 C. glutamicum ,在 CM broth 的培養條件下,發現trc之啟動子表現最好,cat之比活性為6.22 U / mg protein,gdh啟動子Cat比活性為3.94 U / mg protein。預測可能表現基因(ORF)的啟動子區域,將用PCR方式增幅啟動子,將其構築入啟動子偵測載體pORC並以電轉形法轉形入 C. glutamicum LS1183,在 CM 平板上(含有 chloramphenicol 5 ug / ml)進行篩選,發現ORF 24與ORF 29的啟動子活性最佳,其比活性分別為 7.17及 8.17 U / mg protein,較trc強勢啟動子活性提升約30%。將corynephage P1201 DNA 以 Sau3AI 剪切,並選殖入啟動子偵測載體pORC,得到P′1啟動子其表現的cat比活性為8.67 U/mg protein,比目前使用的Ptrc強勢啟動子提升約40%。P′2啟動子其表現的cat比活性為6.28 U/mg protein、P′3啟動子其表現的cat比活性為3.50 U/mg protein,而在P′2與P′3啟動子上游加入不同DNA片段的質體,所表現的cat比活性比單獨具有P′2或P′3啟動子的質體提升一到兩倍。利用LC/MS/MS方法鑑定噬菌體P1201的結構蛋白身份,得到band A比對到ORF 28,推測為噬菌體P1201的portal protein;band D、E、F、G、K、M、N比對到ORF 39推測為head protein;band J、K、N比對到ORF 45推測為噬菌體P1201的tail protein;band O比對到ORF38推測為head protein,proteolytic cleavage可能導致 ORF 39在SDS-PAGE中有高度的移動性。
URI: http://hdl.handle.net/11455/21768
其他識別: U0005-2608200616472400
Appears in Collections:分子生物學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.