Please use this identifier to cite or link to this item:
標題: Cloning of bacteriocin genes from Xanthomonas and expression in E. coli
Xanthomonas 細菌素基因的篩選及在 E. coli 中表現
作者: 廖珮鑾
Liao, Pei-Luan
關鍵字: bacteriocin;細菌素
出版社: 分子生物學研究所
引用: 馬宜恭 (1999). 十字花科黑腐病菌 RNA 聚合酶對 σ70 及 σ32 類型啟動子辨識之探討。國立中興大學分子生物學研究所碩士論文。 楊明浩 (1997). 線狀噬菌體 ψLf 啟動子之選殖與分析。國立中興大學植物學研究所碩士論文。 Bradley, D. (1967) Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev 31: 230-314. Buchman, G.W., Banerjee, S., and Hansen, J.N. (1988) Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. J Biol Chem 263: 16260-16266. Daeschel, M. (1989) Antimicrobial substances from lactic acid bacteria for use as food preservative. Food Technol 43: 164-167. Davey, G. (1981) Mode of action of diplococcin, a bacteriocin from Streptococcus cremoris 346. N. Z. J Dai Sci Technol 16: 187-190. Daw, M.A., and Falkiner, F.R. (1996) Bacteriocins: nature, function and structure. Microbiology 27: 467-479. Ennahar, S., Sashihara, T., Sonomoto, K., and Ishizaki, A. (2000) Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24: 85-106. Fredericq, P. (1957) Colicins. Ann Rev Microbiol 11: 7-22. Fu, Z.B., Ng, K.L., Lam, T.L., and Wong, W.K. (2005) Cell death caused by hyper-expression of a secretory exoglucanase in Escherichia coli. Protein Expr Purif 42: 67-77. Gajic, O., Buist, G., Kojic, M., Topisirovic, L., Kuipers, O.P., and Kok, J. (2003) Novel mechanism of bacteriocin secretion and immunity carried out by lactococcal multidrug resistance proteins. J Biol Chem 278: 34291-34298. Gutierrez, J., Criado, R., Citti, R., Martin, M., Herranz, C., Nes, I.F., Cintas, L.M., and Hernandez, P.E. (2005) Cloning, production and functional expression of enterocin P, a sec-dependent bacteriocin produced by Enterococcus faecium P13, in Escherichia coli. Int J Food Microbiol 103: 239-250. Hechard, Y., and Sahl, H.G. (2002) Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84: 545-557. Hert, A.P., Roberts, P.D., Momol, M.T., Minsavage, G.V., Tudor-Nelson, S.M., and Jones, J.B. (2005) Relative importance of bacteriocin-like genes in antagonism of Xanthomonas perforans tomato race 3 to Xanthomonas euvesicatoria tomato race 1 strains. Appl Environ Microbiol 71: 3581-3588. Heu, S., Oh, J., Kang, Y., Ryu, S., Cho, S.K., Cho, Y., and Cho, M. (2001) gly gene cloning and expression and purification of glycinecin A, a bacteriocin produced by Xanthomonas campestris pv. glycines 8ra. Appl Environ Microbiol 67: 4105-4110. Houlihan, A.J., and Russell, J.B. (2006) Factors affecting the activity of bovicin HC5, a bacteriocin from Streptococcus bovis HC5: release, stability and binding to target bacteria. J Appl Microbiol 100: 168-174. Huang, G., Zhang, L., and Birch, R.G. (2001) A multifunctional polyketide-peptide synthetase essential for albicidin biosynthesis in Xanthomonas albilineans. Microbiology 147: 631-642. Hwang, I., Lim, S.M., and Shaw, P.D. (1992) Cloning and characterization of pathogenicity genes from Xanthomonas campestris pv. glycines. J Bacteriol 174: 1923-1931. Jack, R.W., Tagg, J.R., and Ray, B. (1995) Bacteriocins of gram-positive bacteria. Microbiol Rev 59: 171-200. Joerger, M.C., and Klaenhammer, T.R. (1986) Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol 167: 439-446. June W., Heo S., and Sup, C.Y. (1998) Influence of growth conditions for the production of bacteriocins, Glycinecin A, produced by Xanthomonas campestris pv glycines 8ra. K. J. Plant Pathol 14: 376-381. Kado, C.I., and Liu, S.T. (1981) Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145: 1365-1373. Kim Y. M., Lim H. K., Cho S. K., Kim Y. W., Hyun J., Lee B. H., Kim B. J., Riu K. Z., Lee Y. J., and Moonjae, C. (2004) Cloning of the Xanthomonas campestris pv. glycines 8ra gene for glycinecin A secretion. World J Microbiol Biotechnol 20: 99-103. Kim Y. M., Cho S. K., and Moonjae, C. (2001) Improvement in the stability of Glycinecin A through protein fusion of the two structure components. J Microbiol: 177-180. Klaenhammer, T.R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12: 39-85. Lewus, C.B., Sun, S., and Montville, T.J. (1992) Production of an amylase-sensitive bacteriocin by an atypical Leuconostoc paramesenteroides strain. Appl Environ Microbiol 58: 143-149. Menard, A., Altendorf, K., Breves, D., Mock, M., and Montecucco, C. (1996) The vacuolar ATPase proton pump is required for the cytotoxicity of Bacillus anthracis lethal toxin. FEBS Lett 386: 161-164. Messi, P., Guerrieri, E., and Bondi, M. (2003) Bacteriocin-like substance (BLS) production in Aeromonas hydrophila water isolates. FEMS Microbiol Lett 220: 121-125. Muller, E., and Radler, F. (1993) Caseicin, a bacteriocin from Lactobacillus casei. Folia Microbiol (Praha) 38: 441-446. Neuwald, A.F., Aravind, L., Spouge, J.L., and Koonin, E.V. (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9: 27-43. Nusrat Jabeen, Sheikh Ajaz Rasool, Samia Ahmad, Munazza Ajaz, and Saeed, S. (2004) Isolation, Identification and Bacteriocin Production by Indigenous Diseased Plant and Soil Associated Bacteria. P. J Biol Sci 7: 1893-1897. Parret, A.H., Schoofs, G., Proost, P., and De Mot, R. (2003) Plant lectin-like bacteriocin from a rhizosphere-colonizing Pseudomonas isolate. J Bacteriol 185: 897-908. Pham, H.T., Riu, K.Z., Jang, K.M., Cho, S.K., and Cho, M. (2004) Bactericidal activity of glycinecin A, a bacteriocin derived from Xanthomonas campestris pv. glycines, on phytopathogenic Xanthomonas campestris pv. vesicatoria cells. Appl Environ Microbiol 70: 4486-4490. Reeves, P. (1965) The bacteriocins. Bacteriol Rev 29: 24-45. Royer, M., Costet, L., Vivien, E., Bes, M., Cousin, A., Damais, A., Pieretti, I., Savin, A., Megessier, S., Viard, M., Frutos, R., Gabriel, D.W., and Rott, P.C. (2004) Albicidin pathotoxin produced by Xanthomonas albilineans is encoded by three large PKS and NRPS genes present in a gene cluster also containing several putative modifying, regulatory, and resistance genes. Mol Plant Microbe Interact 17: 414-427. Sakayori, Y., Muramatsu, M., Hanada, S., Kamagata, Y., Kawamoto, S., and Shima, J. (2003) Characterization of Enterococcus faecium mutants resistant to mundticin KS, a class IIa bacteriocin. Microbiology 149: 2901-2908. Sambrook, J., Fritsch, E.F., and Maniatis, T. (2001) Molecular cloning: A Laboratory Manual, 2nd ed. Sancar, A., and Rupp, W.D. (1979) Physical map of the recA gene. Proc Natl Acad Sci U S A 76: 3144-3148. Sano Y., Matsui H., Kobayashi, M., and Kageyama., M. (1990) Pyocin S1 and S2 bcteriocins of Pseudomonas aeruginosa. A. society Microbiol: 352-358. Stoffels, G., Guthmundsdottir, A., and Abee, T. (1994) Membrane-associated proteins encoded by the nisin gene cluster may function as a receptor for the lantibiotic carnocin UI49. Microbiology 140: 1443-1450. Strauch, E., Kaspar, H., Schaudinn, C., Dersch, P., Madela, K., Gewinner, C., Hertwig, S., Wecke, J., and Appel, B. (2001) Characterization of enterocoliticin, a phage tail-like bacteriocin, and its effect on pathogenic Yersinia enterocolitica strains. Appl Environ Microbiol 67: 5634-5642. Sudirman I, Mathieu F, Benoit V, and Lefebvre, G. (1994) Properties of two bacteriocins synthesized by leuconostoc strains. Curr microbiol 28: 155-159. Sun, Q., Wu, W., Qian, W., Hu, J., Fang, R., and He, C. (2003) High-quality mutant libraries of Xanthomonas oryzae pv. oryzae and X. campestris pv. campestris generated by an efficient transposon mutagenesis system. FEMS Microbiol Lett 226: 145-150. Tagg. J. R., Dajani A. S., and W., W.L. (1976) Bacteriocins of Gram-positive bacteria. Bacteriol Rev 40: 722-756. Terry, D.E., Umstot, E., and Desiderio, D.M. (2004) Optimized sample-processing time and peptide recovery for the mass spectrometric analysis of protein digests. J Am Soc Mass Spectrum 15: 784-794. Tudor-Nelson, S. M., Minsavage, G. V., Stall, R. E., and Jones, J.B. (2003) Bacteriocin-like substances from tomato race 3 strains of Xanthomonas campestris pv. vesucatoria. Phytopathology 93: 1415-1421. van der Wal, F.J., Koningstein, G., ten Hagen, C.M., Oudega, B., and Luirink, J. (1998) Optimization of bacteriocin release protein (BRP)-mediated protein release by Escherichia coli: random mutagenesis of the pCloDF13-derived BRP gene to uncouple lethality and quasi-lysis from protein release. Appl Environ Microbiol 64: 392-398. Vieira, J., and Messing, J. (1991) New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100: 189-194. Widjaja, R., Suwanto, A., and Tjahjono, B. (1999) Genome size and macrorestriction map of Xanthomonas campestris pv. glycines YR32 chromosome. FEMS Microbiol Lett 175: 59-68.
This study, the glyA, glyB and glyC genes of Xanthomonas campestris pv. glycines YR32 (XcgYR32) were PCR amplified, cloned into pSK-T vector and sequenced. The putative ORF of the cloned glyA gene has 1,122 base pairs and from which a 374 amino acids protein with molecular weight of 39.2 kDa could be encoded. The putative ORF of glyB, which overlaps by 30 base pairs with glyA, encoded a 152 amino acids protein with a deduced size of 14.9 kDa. The glyC gene is located upstream of the glyA and encoded 152 amino acids with molecular weight of 14.9 kDa and shows 96.7% identity with that of X. campestris pv. glycines 8ra (Xcg8ra). However, a TAA stop codon was found at position 24 of XcgYR32 GlyC. The DNA fragments of this genes were subcloned into pSK vector in different gene organization and orientation. The individual constructs was then transformed into E.coli and bacteriocin activities of transformants were determined. Results showed that bacteriocin activities could be identified in the transformants with both of the glyA and glyB genes and primarily in cell extracts. No specific translation product from glyC in E. coli LCD44 was identified by maxicell experiment. Four protein fusion constructs connecting the glyA and glyB in one open reading frame were created in this study. However, expression of this chimeric constructs in E.coli resulted in formation of insoluble recombinant proteins and no bacteriocin activity could be detected.
Bacteriocin activity produced Xanthomonas fragariae (Xf), a phytophathogenic bacterium of strawberry plants, was identified in this study. The antimicrobial activity of Xf was effective to most of the tested Xanthomonas species. Maximal bacteriocin activity in culture fluid was obtained in the early stationary phase of growth of the Xf. The bacteriocin of Xf was stable at temperature up to 65℃ for 10 minutes. The bacteriocin produced by Xf was partial purified from culture supernatant by ammonium sulfate precipitation and gel filtration chromatography. The molecular weight of the proteins with bacteriocin activity collected from gel filtration column was calculated to be approximately 200 kDa. However, SDS-PAGE analysis indicated that the bacteriocin of Xf might exist as a protein complex from small molecular weight subunits.

本研究將 Xanthomonas campestris pv. glycines YR32 (XcgYR32) 合成細菌素 Glycinecin A之glyA 及 glyB 和上游之 glyC 基因利用引子設計及 PCR 增幅進行選殖與定序。glyA 基因全長包含1,122個核苷酸,轉譯出之GlyA 含有374個胺基酸,分子量約為 39.2 kDa;glyB 基因全長包含 456 個核苷酸,轉譯出之 GlyB 含有 152 個胺基酸且與 glyA 基因重疊 30 個核苷酸,分子量約為14.9 kDa;glyC 基因轉譯出152 個胺基酸且與 Xanthomonas campestris pv. glycines 8ra (Xcg8ra) 的胺基酸序列相似度達 96.7 %,但在第 24 個胺基酸位置出現轉譯終止碼 TAA。將上述基因構築於表現載體,觀察在E. coli 中 Glycinecin A 的活性表現,發現含有 glyA 與 glyB 基因之轉殖株胞內萃取液抑菌活性優於胞外培養液抑菌活性。Maxicell 實驗沒有發現特殊的 GlyC 轉譯產物。設計引子將 glyA、glyB 進行黏合,經轉譯後形成單一蛋白 chimeric A,但四種重組 chimeric A 所表現之蛋白活性多為不可溶且未見抑菌效果。
Xanthomonas fragariae 是以草莓為宿主的植物病原菌,所產生的細菌素對於大部分 Xanthomonas 菌屬具有抑菌效果。當菌株培養至 12 小時即達穩定生長期,且胞外液抑菌活性也達最大值。Xf 細菌素最高溫度耐受度為 65℃ 下作用10分鐘。收集 Xf 細菌素需利用硫酸銨鹽將 Xf 胞外液蛋白沉澱後再以分子篩進行純化,純化後所得具活性的細菌素蛋白分子量估算高達200 kDa。但利用SDS-PAGE 分析卻發現Xf 細菌素可能是由小分子量蛋白所構成。
其他識別: U0005-2708200610270500
Appears in Collections:分子生物學研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.