Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2181
標題: 新型病毒感測器之可行性分析
Feasibility Study of New Virus Sensors
作者: 侯孟助
Hou, Meng-Jhu
關鍵字: ELISA(enzyme-linkedimmunosorbent assay);病毒感測器
出版社: 機械工程學系所
引用: 1. Dreher, T.W., TSAI, C.-H., SKUZESKI J.S., “Aminoacylation identity switch of turnip yellow mosaic virus RNA from valine to methionine results in an infectious virus,” Proceedings of the National Academy of Sciences, p12212-12216, 93. 2. Bransom, K.L., WEILAND, J.J., TSAI C.-H., DREHER T.W., “Coding density of the turnip yellow mosaic virus genome: roles of the overlapping coat protein and p206-readthrough coding regions,” Virology, 206, p403-412, 1995. 3. 賴民峰電阻抗分析於自組性單層薄膜之特性評估與其在生物檢測上之應用,碩士論文,國立成功大學醫學工程研究所,2004. 4. Lee, Y., Lim, G., Moon, W.,“A self-excited micro cantilever biosensor actuated by PZT using the mass micro balancing technique,” Sensors and Actuators A, v 130-131 , p105-110, 2006. 5. Ryu, W.H., Chung, Y.-C., Choi, D.-K., Yoon, C.S., Kim, C.K., Kim, Y.-H.,“ Computer simulation of the resonance characteristics and the sensitivity of cantilever-shaped Al/PZT/RuO2 biosensor,” Sensors and Actuators B, v 97, p 98-102, 2004. 6. Xie, J., Hu, M., Ling, S.-F., Du, H.,“ Fabrication and characterization of piezoelectric cantilever for micro transducer,” Sensors and Actuators A, v 126, pp 182-186, 2006. 7. Shen, Z -S., Wan, Y., Shih, W.-H.,“ Mass detection sensitivity of piezoelectric cantilevers with a nonpiezoelectric extension,” Review of Scientific Instruments, v 77, p 065101, 2006. 8. Klaitabtim, D., Tuantranont, A.,“ Design consideration and finite element modeling of MEMS cantilever for nano-biosensor applications,” 2005 5th IEEE Conference on Nanotechnology, v 1, p489-492, 2005. 9. Noda, K., Hoshino, K., Matsumoto, K., Shimoyama, I.,” A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material,” Sensors and Actuators A, v 127, p295-301, 2006. 10. Johansson, A., Calleja, M., Rasmussen, P.-A., Boisen, A.,“ SU-8 cantilever sensor system with integrated readout,” Sensors and Actuators A,v 123-124, p 111-115, 2005. 11. Villarroya, M., Verd, J., Teva, J., Abadal, G., Perez, F., Esteve, J., Barniol, N.,“ Cantilever based mems for multiple mass sensing,” 2005 PhD Research in Microelectronics and Electronics – Proceedings of the Conference, v I, p 171-174, 2005. 12. Sone, H.,Okano., H., Hosaka., S.,“ Picogram mass sensor using piezoresistive cantilever for biosensor,” Japanese Journal of Applied Physics, v 43, p 4663-4666, 2004. 13. Battiston, F.-M., Ramseyer, J.-P., Lang, H.-P., Baller, M.-K., Gerber, C., Gimzewski, J.-K., Meyer, E., Guntherodt, H.-J.,“ A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout,” Sensors and Actuators B, v 77, p122-131, 2001. 14. Guirardel, M., Bergaud, C., Cattan, E., Remiens, D., Belier, B., Petitgrand, S., Bosseboeuf, A.,“ PZT polarization voltage effects on off-centered PZT patch actuating silicon membrane,” Sensors and Actuators A, v 110, p 385-389, 2004. 15. Kim, H -J., Kim, Y -B., Park, J., Kim, T -S.,“ Biological Element Detection Sensor Application Of Micromachined PZT Thick Film Cantilever,” Proceedings of IEEE Sensors, v 2, p 1054-1058, 2003. 16. Campbell, G -A., Mutharasan, R.,“ Detection and quantification of proteins using self-excited PZT-glass millimeter-sized cantilever,” Biosensors and Bioelectronics, v 21, p 597-607, 2005.
摘要: 
傳統的病毒感測方式如ELISA(enzyme-linkedimmunosorbent assay),Western Blotting有著檢測時間長,檢測設備貴,靈敏度不佳的缺點。由於病毒感測方式靈敏度不佳,研究人員常常需要大量複製病毒的數量以達感測所需的最低標準。如此一來將大大的增長檢測時間,並增加檢測時的危險性。本論文出新型病毒感測器設計並利用植物性TYMV( Turnip Yellow Mosaic Virus)病毒測試。具體而言希望能開發出具高靈敏度、高特異性、即時與微量的偵測技術。病毒感測器設計將檢測在體內的微量病毒抓取於微米等級的矽薄膜上,並利用共軛焦顯微鏡觀測矽薄膜表面以及利用結構共振頻率的漂移等方式來計算吸附上病毒的質量。
實驗結果可得,本論文已經成功設計和製作新病毒感測器。本論文還討論不同流速下對於PDMS微流道所施加的壓力。再經由實驗討論PDMS微流道與基板接合力以克服流速快所造成的流道剝離現象。最後本論文還討論如何應用微流道增加自我分子組裝層和病毒接附密度。

Traditional virus sensing techniques such as ELISA (enzyme-linkedimmunosorbent assay) and Western Blotting require longer process times, more expensive detection equipments and poorer sensitivity. Because of poor sensitivities of those methods, researchers need to duplicate numerous numbers of viruses to satisfy sensor's sensitivity. However, this step will substantially increase total process times and experimental hazard. This thesis outlines the work to develop a new virus microsensor for real-time detection, precision sensitivity and high selectivity. We designed and fabricated a new virus sensor which includes a PZT thin film, a silicon membrane, recognition layers (MUA, EDC/NHS, and Antibody), and microfluidic channel. Recognition layers are used to capture viruses on the sensor's surface. Trapped viruses on sensor's surface were examined by confocal microscope. Also, shift of sensor's resonance frequency are measured to calculate mass of trapped viruses when the viruses are attached on the recognition layers.
Experimental results show that the flow rate, concentration of MUA and EDC/NHS, and the turbulent flow can significantly affect the density of recognition layer on sensors' surface. Using microfluidic channel, the density could be attained 70~80% to contrast just 10% by dipping method.
URI: http://hdl.handle.net/11455/2181
其他識別: U0005-2708200816534400
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.