Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/21812
標題: 利用轉基因植物生產活性胜肽及醫藥工業用酵素之研究
Production of bioactive peptides and a pharmaceutical enzyme in transgenic plant
作者: 鄭麗珠
Cheng, Li-Chu
關鍵字: Gy1;活性胜肽N醯化胺基酸消旋酶;Gy5;VVYP;NAAAR;L-HPA
出版社: 分子生物學研究所
引用: 王升陽、徐麗芬、楊寧蓀 (2005). 植物基因轉殖在醫藥上之應用. P.219-229. 植 物基因轉殖之原理與應用. 植物生物技術教學資源中心主編 2005年5 月再版 王月華、孫鵬凱、余淑美 (2005). 植物基因轉殖技術之研發與展望. P.7-23 植物 基因轉殖之原理與應用. 植物生物技術教學資源中心主編 2005年5月 再版 陳明豐 (2004). 高血壓防治手冊—高血壓偵測、控制與治療流程指引.行政院衛 生署國民健康局台灣內科醫學會2004年3月出版 陳建仁、游山林、白其卉、蘇大成、曾慶孝、簡國龍、黃麗卿 (2003).台灣地區 高血糖、高血脂、高血壓盛行率調查期末報告.P.58-83. 行政院衛生署國 民健康局年報 Adachi, M., Takenaka, Y., Gidamis, A.B., Mikami, B., and Utsumi, S. (2001). Crystal structure of soybean proglycinin A1aB1b homotrimer. J Mol Biol 305, 291-305. Adachi, M., Kanamori, J., Masuda, T., Yagasaki, K., Kitamura, K., Mikami, B., and Utsumi, S. (2003). Crystal structure of soybean 11S globulin: glycinin A3B4 homohexamer. Proc Natl Acad Sci U S A 100, 7395-7400. Adibi, S.A. (1971). Intestinal transport of dipeptides in man: relative importance of hydrolysis and intact absorption. J Clin Invest 50, 2266-2275. Agius, F., Gonzalez-Lamothe, R., Caballero, J.L., Munoz-Blanco, J., Botella, M.A., and Valpuesta, V. (2003). Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotechnol 21, 177-181. Arai, S., Osawa, T., Ohigashi, H., Yoshikawa, M., Kaminogawa, S., Watanabe, M., Ogawa, T., Okubo, K., Watanabe, S., Nishino, H., Shinohara, K., Esashi, T., and Hirahara, T. (2001). A mainstay of functional food science in Japan--history, present status, and future outlook. Biosci Biotechnol Biochem 65, 1-13. Arakawa, T., Chong, D.K., Slattery, C.W., and Langridge, W.H. (1999). Improvements in human health through production of human milk proteins in transgenic food plants. Adv Exp Med Biol 464, 149-159. Barta, A., Sommergruber, K., and Thompson, D. (1986). The expression of a nopaline synthase human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue Plant Mol Biol 6, 347-357. Beilinson, V., Chen, Z., Shoemaker, C., Fischer, L., Goldberg, B., and Nielsen, C. (2002). Genomic organization of glycinin genes in soybean. Theor Appl Genet 104, 1132-1140. Bhargava, A., Osusky, M., Hancock, R.E., Forward, B.S., Kay, W.W., and Misra, S. (2007). Antiviral indolicidin variant peptides: Evaluation for broad-spectrum disease resistance in transgenic Nicotiana tabacum. Plant Science 172, 515-523. Brantl, V., Teschemacher, H., Henschen, A., and Lottspeich, F. (1979). Novel opioid peptides derived from casein (beta-casomorphins). I. Isolation from bovine casein peptone. Hoppe Seylers Z Physiol Chem 360, 1211-1216. Cohn, J.S., Marcoux, C., and Davignon, J. (1999). Detection, quantification, and characterization of potentially atherogenic triglyceride-rich remnant lipoproteins. Arterioscler Thromb Vasc Biol 19, 2474-2486. Comis, D. (1999). There''s Treasure in the Soybean Genome Map. Agricultural Research. Dickinson, C.D., Hussein, E.H., and Nielsen, N.C. (1989). Role of posttranslational cleavage in glycinin assembly. Plant Cell 1, 459-469. Goto, F., Yoshihara, T., Shigemoto, N., Toki, S., and Takaiwa, F. (1999). Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17, 282-286. Hajdukiewicz, P., Svab, Z., and Maliga, P. (1994). The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25, 989-994. Hamilton, A.J., Brown, S., and Yuanhai, H. (1998). A transgene with repeated DNA causes high frequency, post-transcriptional suppression of ACC-oxidase gene expression in tomato. Plant Journal. 15, 737-746. Hara, H., Funabiki, R., Iwata, M., and Yamazaki, K. (1984). Portal absorption of small peptides in rats under unrestrained conditions. J Nutr 114, 1122-1129. Hiatt, A., Cafferkey, R., and Bowdish, K. (1989). Production of antibodies in transgenic plants. Nature 342, 76-78. Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6, 271-282. Hill, J.E., and Breidenbach, R.W. (1974). Proteins of Soybean Seeds: I. Isolation and Characterization of the Major Components. Plant Physiol 53, 742-746. Iida, S., Kusaba, M., and Nishio, T. (1997). Mutants lacking glutelin subunits in rice: mapping and combination of mutated glutelin genes. Theor Appl Genet 94, 177-183. Kagawa, K., Matsutaka, H., Fukuhama, C., Watanabe, Y., and Fujino, H. (1996a). Globin digest, acidic protease hydrolysate, inhibits dietary hypertriglyceridemia and Val-Val-Tyr-Pro, one of its constituents, possesses most superior effect. Life Sci 58, 1745-1755. Kagawa, K., Hiroaki, F., Chizuko, F., Kazuhisa, H., Hisako, M., Toyoo, N., and Masahiro, N. (1996b). Peptide and formulations thereof inhibiting elevations of triglyceride levels in blood (Japan: Hankyu Kyoei Bussan Co., Ltd. Osaka, JP). Koshiyama, I. (1983). Storage protein of soybean. p. 427-450. In W. Gottschalk and H. P. Muller (ed.) Seed proteins: Biochemistry, genetics, nutritive value. Nijhoff/Junk, The Hague. Kung, S.D., and Wu, R. (1993). Transgenic plants. (San Diego: Academic Press, Inc.). Larkins, B.A., and Hurkman, W.J. (1978). Synthesis and Deposition of Zein in Protein Bodies of Maize Endosperm. Plant Physiol 62, 256-263. Li, X.P., Gan, R., Li, P.L., Ma, Y.Y., Zhang, L.W., Zhang, R., Wang, Y., and Wang, N.N. (2006). Identification and functional characterization of a leucine-rich repeat receptor-like kinase gene that is involved in regulation of soybean leaf senescence. Plant Mol Biol 61, 829-844. Liu, Q., Singh, S.P., and Green, A.G. (2002). High-stearic and High-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol 129, 1732-1743. Lycett, G.W., Croy, R.R., Shirsat, A.H., and Boulter, D. (1984). The complete nucleotide sequence of a legumin gene from pea (Pisum sativum L.). Nucleic Acids Res 12, 4493-4506. Mae, M., Myrberg, H., Jiang, Y., Paves, H., Valkna, A., and Langel, U. (2005). Internalisation of cell-penetrating peptides into tobacco protoplasts. Biochim Biophys Acta 1669, 101-107. Masuda, O., Nakamura, Y., and Takano, T. (1996). Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats. J Nutr 126, 3063-3068. Miwa, M. (2000). Development of functional foods based on physiological activity of amino acids and peptides in Japan. Biofactors 12, 161-165. Napoli, C., Lemieux, C., and Jorgensen, R. (1990). Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell 2, 279-289. Nielsen, N.C. (1985). The structure and complexity of the 11S polypeptides in soybeans Journal of the American Oil Chemists'' Society 62, 1680-1686. Nielsen, N.C., Dickinson, C.D., Cho, T.J., Thanh, V.H., Scallon, B.J., Fischer, R.L., Sims, T.L., Drews, G.N., and Goldberg, R.B. (1989). Characterization of the glycinin gene family in soybean. Plant Cell 1, 313-328. Nunes, A.C., Vianna, G.R., Cuneo, F., Amaya-Farfan, J., de Capdeville, G., Rech, E.L., and Aragao, F.J. (2006). RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta 224, 125-132. Omoni, A.O., and Aluko, R.E. (2005). Soybean foods and their benefits: potential mechanisms of action. Nutr Rev 63, 272-283. Onishi, K., Matoba, N., Yamada, Y., Doyama, N., Maruyama, N., Utsumi, S., and Yoshikawa, M. (2004). Optimal designing of beta-conglycinin to genetically incorporate RPLKPW, a potent anti-hypertensive peptide. Peptides 25, 37-43. Oria, M.P., Hamaker, B.R., Axtell, J.D., and Huang, C.P. (2000). A highly digestible sorghum mutant cultivar exhibits a unique folded structure of endosperm protein bodies. Proc Natl Acad Sci U S A 97, 5065-5070. Philip, R., Darnowski, D.W., Maughan, P.J., and Vodkin, L.O. (2001). Processing and localization of bovine beta-casein expressed in transgenic soybean seeds under control of a soybean lectin expression cassette. Plant Sci 161, 323-335. Prak, K., Maruyama, Y., Maruyama, N., and Utsumi, S. (2006). Design of genetically modified soybean proglycinin A1aB1b with multiple copies of bioactive peptide sequences. Peptides 27, 1179-1186. Prak, K., Nakatani, K., Katsube-Tanaka, T., Adachi, M., Maruyama, N., and Utsumi, S. (2005). Structure-function relationships of soybean proglycinins at subunit levels. J Agric Food Chem 53, 3650-3657. Qu le, Q., and Takaiwa, F. (2004). Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotechnol J 2, 113-125. Rao, K.V., Rathore, K.S., Hodges, T.K., Fu, X., Stoger, E., Sudhakar, D., Williams, S., Christou, P., Bharathi, M., Bown, D.P., Powell, K.S., Spence, J., Gatehouse, A.M., and Gatehouse, J.A. (1998). Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J 15, 469-477. Sambrook, J., and Russell, D.W. (2001). Molecular Cloning. Shotwell, M.A., Afonso, C., Davies, E., Chesnut, R.S., and Larkins, B.A. (1988). Molecular characterization of oat seed globulin. Plant Physiol. 87, 698-704. Staswick, P.E., Hermodson, M.A., and Nielsen, N.C. (1984). Identification of the cystines which link the acidic and basic components of the glycinin subunits. J Biol Chem 259, 13431-13435. Sugita, K., Endo-Kasahara, S., Tada, Y., Lijun, Y., Yasuda, H., Hayashi, Y., Jomori, T., Ebinuma, H., and Takaiwa, F. (2005). Genetically modified rice seeds accumulating GLP-1 analogue stimulate insulin secretion from a mouse pancreatic beta-cell line. FEBS Lett 579, 1085-1088. Takagi, H., Hiroi, T., Yang, L., Tada, Y., Yuki, Y., Takamura, K., Ishimitsu, R., Kawauchi, H., Kiyono, H., and Takaiwa, F. (2005). A rice-based edible vaccine expressing multiple T cell epitopes induces oral tolerance for inhibition of Th2-mediated IgE responses. Proc Natl Acad Sci U S A 102, 17525-17530. Takahashi, M., Uematsu, Y., Kashiwaba, K., Yagasaki, K., Hajika, M., Matsunaga, R., Komatsu, K., and Ishimoto, M. (2003). Accumulation of high levels of free amino acids in soybean seeds through integration of mutations conferring seed protein deficiency. Planta 217, 577-586. Takaiwa, F., Kikuchi, S., and Oono, K. (1986). The structure of rice storage protein glutelin precursor deduced from cDNA. FEBS Lett. 206, 33-35. Takaiwa, F., Ebinuma, H., Kikuchi, S., and Oono, K. (1987). Nucleotide sequence of a rice glutelin gene. FEBS Lett. 221, 43-47. Vandekerckhove, J., Van Damme, J., Van Lijsebettens, M., Botterman, J., De Block, M., Vandewiele, M., De Clercq, A., Leemans, J., Van Montagu, M., and Krebbers, E. (1989). Enkephalins produced in transgenic plants using modified 2S seed storage proteins. Bio/Technology 7, 929–931. Woodard, S.L., Mayor, J.M., Bailey, M.R., Barker, D.K., Love, R.T., Lane, J.R., Delaney, D.E., McComas-Wagner, J.M., Mallubhotla, H.D., Hood, E.E., Dangott, L.J., Tichy, S.E., and Howard, J.A. (2003). Maize (Zea mays)-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem 38, 123-130. Yamamoto, N. (1997). Antihypertensive peptides derived from food proteins. Biopolymers 43, 129-134. Yasuda, H., Tada, Y., Hayashi, Y., Jomori, T., and Takaiwa, F. (2005). Expression of the small peptide GLP-1 in transgenic plants. Transgenic Res 14, 677-684. Yoshino, M., Kanazawa, A., Tsutsumi, K.I., Nakamura, I., and Shimamoto, Y. (2001). Structure and characterization of the gene encoding alpha subunit of soybean beta-conglycinin. Genes Genet Syst 76, 99-105. Zeitlin, L., Olmsted, S.S., Moench, T.R., Co, M.S., Martinell, B.J., Paradkar, V.M., Russell, D.R., Queen, C., Cone, R.A., and Whaley, K.J. (1998). A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat Biotechnol 16, 1361-1364. 陳弘章 (2003) 轉殖水稻生產D-hydantoinase之研究:同質品系篩選、蛋白質純化 及活性分析,中興大學分子生物學研究所碩士論文 陳明豐 (2003). 高血壓防治手冊—高血壓偵測、控制與治療流程指引.行政院衛 生署國民健康局台灣內科醫學會2004年3月出版 陳瑞斌 (2001) 豬乳鐵蛋白基因在轉殖水稻表現之研究,中興大學分子生物學 研究所碩士論文 陳鵬文 (1997) 水稻胚發育時期特有表現基因之分離與分析,中興大學植物學 研究所博士論文 李寬志 (2000) 轉基因水稻生產D-hydantoinase之研究,中興大學分子生物學研 究所碩士論文 張繼中 (2002) 轉殖水稻生產豬乳鐵蛋白之研究:同質品系篩選、蛋白質純化及 活性分析,中興大學分子生物學研究所碩士論文 涂倉榮 (2000) Ose705及Ose719基因啟動子之分析,中興大學分子生物學研究所 碩士論文 曾志偉 (2005) 利用轉基因水稻表現醫療工業用酵素L-N-Carbamoylase以生產 L-Homophenylalanine之研究,中興大學分子生物學研究所碩士論文 Arakawa, T., Chong, D.K., Slattery, C.W., and Langridge, W.H. (1999). Improvements in human health through production of human milk proteins in transgenic food plants. Adv Exp Med Biol 464, 149-159. Arauz-Pacheco, C., Parrott, M.A., and Raskin, P. (2002). The treatment of hypertension in adult patients with diabetes. Diabetes Care 25, 134-147. Birnbaum, S.M., Levintow, L., Kingsley, R.B., and Greenstein, J.P. (1952). Specificity of amino acid acylases. J Biol Chem 194, 455-470. Buikema, H. (2003). Essential hypertension and left ventricular hypertrophy in cardiovascular disease: beyond overactivity of the renin-angiotensin-aldosterone-sodium system. J Hypertens 21, 265-267. Capell, T., Escobar, C., Lui, H., Burtin, D., Lepri, O., and Christou, P. (1998). Over-expression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theor. Appl. Genet., 246–254. Cheng, Y., and Long, M. (2007). A cytosolic NADP-malic enzyme gene from rice (Oryza sativa L.) confers salt tolerance in transgenic Arabidopsis. Biotechnol Lett 29, 1129-1134. Corradi, H.R., Schwager, S.L., Nchinda, A.T., Sturrock, E.D., and Acharya, K.R. (2006). Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design. J Mol Biol 357, 964-974. Cushman, D.W., and Cheung, H.S. (1971). Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 20, 1637-1648. Das, M., and Soffer, R.L. (1975). Pulmonary angiotensin-converting enzyme. Structural and catalytic properties. J Biol Chem 250, 6762-6768. De Zoeten, G.A., Penswick, J.R., Horisberger, M.A., Ahl, P., Schultze, M., and Hohn, T. (1989). The expression, localization, and effect of a human interferon in plants. Virology 172, 213-222. Elisseeva, Y.E., Orekhovich, V.N., Pavlikhina, L.V., and Alexeenko, L.P. (1971). Carboxycathepsin--a key regulatory component of two physiological systems involved in regulation of blood pressure. Clin Chim Acta 31, 413-419. Flint, L. (2004). The role of ACE inhibitor therapy in treating cardiovascular disease. Nurs Times 100, 34-37. Harada, E., Yoshimura, M., Yasue, H., Nakagawa, O., Nakagawa, M., Harada, M., Mizuno, Y., Nakayama, M., Shimasaki, Y., Ito, T., Nakamura, S., Kuwahara, K., Saito, Y., Nakao, K., and Ogawa, H. (2001). Aldosterone induces angiotensin-converting-enzyme gene expression in cultured neonatal rat cardiocytes. Circulation 104, 137-139. Hiatt, A., Cafferkey, R., and Bowdish, K. (1989). Production of antibodies in transgenic plants. Nature 342, 76-78. Hsu, S.K., Lo, H.H., Kao, C.H., Lee, D.S., and Hsu, W.H. (2006). Enantioselective synthesis of L-homophenylalanine by whole cells of recombinant Escherichia coli expressing L-aminoacylase and N-acylamino acid racemase genes from Deinococcus radiodurans BCRC12827. Biotechnol Prog 22, 1578-1584. Inagaki, K., Otsuka, F., Suzuki, J., Kano, Y., Takeda, M., Miyoshi, T., Otani, H., Mimura, Y., Ogura, T., and Makino, H. (2006). Involvement of bone morphogenetic protein-6 in differential regulation of aldosterone production by angiotensin II and potassium in human adrenocortical cells. Endocrinology 147, 2681-2689. Mason, H.S., Lam, D.M., and Arntzen, C.J. (1992). Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci U S A 89, 11745-11749. Noury, M., Bassie, L., Lepri, O., Kurek, I., Christou, P., and Capell, T. (2000). A transgenic rice cell lineage expressing the oat arginine decarboxylase (adc) cDNA constitutively accumulates putrescine in callus and seeds but not in vegetative tissues. Plant Mol Biol 43, 537-544. Ondetti, M.A., and Cushman, D.W. (1982). Enzymes of the renin-angiotensin system and their inhibitors. Annu Rev Biochem 51, 283-308. Oshima, S., Ogawa, H., Mizuno, Y., Yamashita, S., Noda, K., Saito, T., Sumida, H., Suefuji, H., Kaikita, K., Soejima, H., and Yasue, H. (1997). The effects of the angiotensin-converting enzyme inhibitor imidapril on plasma plasminogen activator inhibitor activity in patients with acute myocardial infarction. Am Heart J 134, 961-966. Peeters, K., De Wilde, C., De Jaeger, G., Angenon, G., and Depicker, A. (2001). Production of antibodies and antibody fragments in plants. Vaccine 19, 2756-2761. Sambrook, J., and Russell, D.W. (2001). Molecular Cloning. (New York: Cold spring harbor laboratory press). Slavnov, V.N., Markov, V.V., Oleinik, V.A., Luchitskii, E.V., and Rudichenko, V.M. (1989). [The renin-angiotensin-aldosterone system in hypertension of hypothalamic origin]. Klin Med (Mosk) 67, 60-64. Takahashi, T., and Hatano, K. (1991). Acylamino acid racemase, production and use thereof. In Patent US (ed). Tokuyama, S., and Hatano, K. (1995a). Cloning, DNA sequencing and heterologous expression of the gene for thermostable N-acylamino acid racemase from Amycolatopsis sp. TS-1-60 in Escherichia coli. Appl Microbiol Biotechnol 42, 884-889. Tokuyama, S., and Hatano, K. (1995b). Purification and properties of thermostable N-acylamino acid racemase from Amycolatopsis sp. TS-1-60. Appl Microbiol Biotechnol 42, 853-859. Tokuyama, S., Hatano, K., and Takahashi, T. (1994a). Discovery of a novel enzyme, N-acylamino acid racemase in an actinomycete: screening, isolation and identification. . Biosci. Biotech. Biochem 58, 24-27. Tokuyama, S., Miya, H., Hatano, K., and Takahashi, T. (1994b). Purification and properties of a novel enzyme, N-acylamino acid racemase, from Streptomyces atratus Y-53. Applied Microbiology and Biotechnology 40, 835-840. Torres, E., Vaquero, C., Nicholson, L., Sack, M., Stoger, E., Drossard, J., Christou, P., Fischer, R., and Perrin, Y. (1999). Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Res 8, 441-449. Volpe, M. (2004). Hypertension therapy: mixing, matching, and meeting targets. Adv Ther 21, 107-122. Wang, W.C., Chiu, W.C., Hsu, S.K., Wu, C.L., Chen, C.Y., Liu, J.S., and Hsu, W.H. (2004). Structural basis for catalytic racemization and substrate specificity of an N-acylamino acid racemase homologue from Deinococcus radiodurans. J Mol Biol 342, 155-169. Wyvratt, M.J. (1988). Evolution of angiotensin-converting enzyme inhibitors. Clin Physiol Biochem 6, 217-229. Yang, H.Y., Erdos, E.G., and Levin, Y. (1970). A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. Biochim Biophys Acta 214, 374-376. Ye, X., Al-Babili, S., Kloti, A., Zhang, J., Lucca, P., Beyer, P., and Potrykus, I. (2000). Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287, 303-305.
摘要: 
Hyperlipidemia can cause the heart disease and the brain stroke. Effective suppression of the amount of cholesterol in blood will help to reduce their potential risks. The bioactive peptides─Val-Val-Tyr-Pro (VVYP) is one of the well known effective materials to suppress the triglyceride absorption of intestinal tract, and to reduce the blood cholesterol. In this study, we engineered transgenic soybean plants to carry bioactive peptides VVYP. The strategy included the construction of soybean storage protein Glycinin Gy5 and Gy1 genes containing VVYP and using intestine protease to release the bioactive peptides when ingested. The constructs of Gy5 containing 5 copies of VVYP or 10 copies of VVYP were complete. In principle, the soybean may contain the fixed amount of storage protein in seeds. In order to increase the engineered VVYP-containing recombinant proteins in transgenic soybeans, using RNA interference approach to suppress the expression of endogenous soybean storage protein can be effective. The RNAi vectors had been constructed and agrobacterium-mediated transformation is ongoing. In addition, this study also prepares antibodies against Gy5 and Gy1 proteins respectively. The western hybridization results revealed that Gy5 and Gy1 antibodies can differentially recognize acidic and basic chains of different groups of glycinin, providing an useful tool to identify the engineered proteins in transgenic soybeans.
Comparing to current microbial and mammalian cell culture systems, plants have many advantages as bioreactors for the production of pharmaceuticals, antibodies and vaccines, such as the less cost of production and no risk of contamination by animal pathogens. The L-homophenylalanine (L-HPA) is a chiral and unnatural amino acid. It was used in the synthesis of angiotensin converting enzyme inhibitors and many pharmaceuticals. In this study, we engineered transgenic rice plants to produce the pharmaceutical enzyme N-acylamino acid racemase (NAAAR) in seeds. Seven homozygous transgenic rice plants (three 705-NAAAR, two 35S-NAAAR, and two Act-NAAAR) were obtained and confirmed by using hygromycin selection, PCR analysis, Southern blot and western blot analysis. NAAAR combining with L-aminoacylase (LAA) can convert N-acetyl-D-homophenylalanine to L-HPA. The activity assay were performed with high performance liquid chromatography (HPLC) using a chirobiotic T column. The optimal separation condition of NAc-D-HPA and NAc-L-HPA was methanol/ 0.01 M ammonium acetate=70/30 as mobile phase at a flow-rate of 0.5 mL/min. The reaction time and temperature optima of the NAAAR were 2 hrs and 50℃, respectively. This study confirmed that the rice-based-production of NAAAR combining with LAA can be used for the production of L-HPA.

高血脂症會增加高血壓病人發生心臟病及腦中風的機率,因此有效抑制血脂的升高,為一大重要課題。活性胜肽Val-Val-Tyr-Pro (VVYP),可抑制腸道吸收三酸甘油脂的主要因子,可經由降低三酸甘油脂濃度達到降血脂的作用。本研究利用基因工程改造大豆貯藏性蛋白Glycinin Gy5與Gy1基因,使之帶有降血脂機能性活性胜肽VVYP之胺基酸序列,即可因食用此具功能性的大豆,藉由腸胃道內酵素分解利用後,達到抑制血脂濃度的目的,因而可開發大豆成為大量生產此活性胜肽之生物工廠。首先選殖Gy5與Gy1作為攜載體,並進一步完成Gy5帶有五套與十套VVYP活性胜肽之載體構築。另外為了要提高外來基因Gy5-VVYP/Gy1-VVYP表現量,嘗試抑制原有的貯藏性蛋白質之表現,因此針對Glycinin group I 之Gy2/Gy3基因,進行靜默化處理。目前已完成RNAi載體構築,正進行基因轉殖。本研究進行Gy5與Gy1抗體的製備。利用西方轉漬法分析發現,Gy5抗體除了對本身具有良好辨識能力,但對Gy1辨識能力較差。經由不同品種大豆進行西方轉漬法分析結果可知,Gy5抗體與Gy1抗體對於Glycinin group I及group II之貯藏蛋白質具有不同的辨識能力,可供未來轉殖植株偵測之用。
利用植物生產醫藥用藥物、抗體與疫苗具有相當多的優點。相較於微生物與細胞培養系統之一般常用的技術,植物具有較低成本與危險性之優勢。本研究的目的在於利用轉殖水稻生產醫藥工業用酵素N-acylamino acid racemase, (NAAAR),其功能為可將N-acety-D-homopheylalanine (NAc-D-HPA)轉換成N-acety-L-homopheylalanine (NAc-L-HPA),進一步搭配L-aminoacylase (LAA),可以生成高血壓抑制物ACEI之重要前驅物L-HPA。本研究利用水稻胚特有基因啟動子Ose705、持續表現型CaMV35S啟動子及水稻肌動蛋白啟動子(actin)啟動NAAAR基因之表現。以抗生素篩選、PCR與西方轉漬法分析後,獲得三株705-NAAAR、兩個35S-NAAAR以及兩個Act-NAAAR轉殖株之同質品系。經由Ninhydrin呈色法初步鑑定其活性,結果顯示由水稻萃取之NAAAR具有將NAc-D-HPA轉換成NAc-L-HPA之能力。並進一步以高效能液相層析儀(HPLC)搭配Chirobiotic T 管柱,證明於移動相methanol/ 0.01 M ammonium acetate=70/30,流速= 0.5 mL/min,可將NAc-D-HPA轉換成NAc-L-HPA。轉殖水稻所生產之NAAAR其最適反應時間為2小時、最適反應溫度為50℃。綜合以上結果,可證實來自Deinococcus radiodurans BCRC12827菌株之NAAAR可於水稻中表現,因此利用轉殖水稻作為生物反應器,可以生產醫藥工業用酵素NAAAR。
URI: http://hdl.handle.net/11455/21812
其他識別: U0005-0608200717020200
Appears in Collections:分子生物學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.