Please use this identifier to cite or link to this item:
標題: 旋轉T型微流道乳化液滴生成之可視化實驗
Visualization experiment of droplet emulsion in centrifugal T-shaped microchannels
作者: 邱逸軒
Chiu, I-Hsuan
關鍵字: droplet emulsion;乳化液滴;T-shaped microchannels;centrifugal;T型微流道;離心力
出版社: 機械工程學系所
引用: Burns M. A., Johnson B. N., Brahmasandra S. N., Handique k., Webster J. R., Krishnan M., Sammarco T. S., Man P. M., Jones D., Heldsinger D., Mastrangelo C. H., and Burke D.T.,“An integrated nanoliter DNA analysis device,” Science, Vol. 282, 1998, pp 484-487. Ducrée J., Schlosser H. P., Haeberle S., Glatzel T., Brenner T. and Zengerle R., “Centrifugal Platform for High-Throughout Reactive Micromixing,” Proceedings of 8th International Conference on Miniaturized System for Chemical and Life Sciences Systems, Malmo, Sweden, September, 26-30, 2004. Fowler J., Moon H. and Kim C. J., “Enhancement of Mixing by Droplet Based Microfluidics,” Proceedings of the 15th IEEE Micro Electro Mechanical Systems (MEMS), Las Vegas, Nevada, 2002, pp. 97-100. Garstecki P., Fuerstman M. J., Stone H. A. and Whitesides G. M., “Formation of Droplets and Bubbles in a Microfluidic T-junction,” Lab on a Chip, Vol. 6, 2006, pp. 437-446. Gustafsson M., Hirschberg D., Palmberg C., Jornvall H. and Bergman T., “Integrated Sample Preparation and MALDI Mass Spectrometry on a Microfluidic Compact Disk,” Analytical Chemistry, Vol. 76, No.2, 2004, pp. 345-350. Haeberle S., Zengerle R. and Ducrée J., “Centrifugal Generation and Manipulation of Droplet Emulsions,” Microfluid and Nanofluid, Vol. 3, 2007, 65-75. Hirschberg D., Jagerbrink T., Samskog J., Gustafsson M., Stahlberg M., Alvelius G., Husman B., Carlquist M., Jornvall H. and Bergman T., “Detection of Phosphorylated Peptides in Proteomic Analyses Using Microfluidic Compact Disk Technology,” Analytical Chemistry, Vol. 76, 2004, pp. 5864-3871. Husny J. and White J. J., ”The Effect of Elasticity on Drop Creation in T-shaped Microchannels,” J. Non-Newtonian Fluid Mech, Vol. 137, 2006, pp. 121-136. Jun T. K. and Kim C.-J., “Valveless Pumping Using Traversing Vapor Bubbles in Microchannels,” Applied Physics, Vol. 83, No. 11, June 1998, pp. 5658-5664. Madou M. J. and Kellogg G. J., “LabCD: A Centrifuge-Based Microfluidic Platform for Diagnostics,” Proceedings of SPIE- Systems and Technologies for Clinical Diagnostics and Drug Discovery, Vol. 3259, 1998, pp. 80-93. Menech M., Garstecki P. and Jousse F., “Transition from Squeezing to Dripping in a Microfluidic T-shaped Junction.” J. Fluid Mech, Vol. 595, 2008, pp. 141-161. Nisisako T., Torii T. and Higuchi T., “Formation of Liquid Droplets in a Microchannel Network for Microreactor Applications,” Lab on a Chip, Vol. 2, No.1, 2002, pp. 24-26. Sammarco T. S. and Burns M. A., “Thermocapillary Pumping of Discrete Drops in Microfabricated Analysis Devices,” Journal of American Institute for Chemical Engineers, Vol. 45, 1999, pp. 350-366. Stone H. A., Stroock A. D. and Ajdari A., “Engineering Flows in Small Devices: Microfluidics Toward a Lab-on-A-Chip,” Annual Review of Fluid Mechanics, Vol. 36, 2004, pp. 381-411. Takahashi K., Yoshino K., Hatano S., Nagayama K. and Asano T., “Novel Applications of Thermally Controlled Microbubble Driving System,” Proceedings of 14th IEEE Micro Electro Mechanical Systems, Interlaken, Switzerland, 2001, pp. 286-289. Thorsen G., Ekstrand G., Selditz U., Wallenborg R. S. and Andersson P., “Integated Microfluidics for Parallel Processing of Proteins in a CD Microlaboratory,” Proceedings of 7th International Conference on Miniaturized Chemical and Biochemlcal Analysis Systems, Squaw Valley, California, USA, October 5-9, 2003. Vestad T., Marr D. W. M. and Oakey J., “Flow Control for Capillary-Pumped Microfluidic Systems,” Journal of Micromechanics and Microengineering, Vol. 14, 2004, pp. 1503-1506. Wang A. B., Chen S. S., Sung P. F., Lin I. C., Chen C.C. and Fedorchenko A. I., “The Study of Drop-Surface Interactions,” Bulletin of the College of Engineering, N.T.U., No.91, 2004, pp. 103-115. Xu J. H., Li S. W., Tan J. and luo G. S., "Formation of monodisperse microbubbles in a microfluidic device," Aiche Journal, Vol. 52, 2006, pp. 2254-2259. 陳炯翰,“微流道內兩相流動態數值模擬,”中興大學機械工程系研究所碩士論文,民國97年7月。
本研究以旋轉時產生的離心力驅動液體,觀察在T型結構上乳化液滴的生成情形。實驗採用CNC微機械加工技術,於直徑10 cm的透明光面壓克力碟片上製作T型微流道晶片。實驗主要觀察在不同轉速下,T型結構處乳化液滴的產生情形。流場可視化的取像是由He-Ne Laser及光電二極體定位裝置輸出觸發訊號,同步啟動CCD攝影機擷取影像。實驗流體為去離子水與葵花油,產生油包水的乳化液滴。液體受毛細力影響,有轉速下限;流速變大葵花油不易截斷去離子水,有轉速上限。在相同的流道寬度與轉速下,油的速度越快,乳化液滴越小。隨著轉速提高,去離子水與葵花油流速增加,Ca值變大,乳化液滴也跟著變大。乳化液滴靠連續相流體推力截斷,當連續相流道越寬,截出的乳化液滴就越大。
其他識別: U0005-2808200809512300
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.