Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/21890
標題: 探討與PTPN2有交互作用的蛋白,以及在肺癌上所扮演的角色
Study on PTPN2 interacting protein and its role in lung cancer
作者: 陳宣余
Chen, Hsuan-Yu
關鍵字: 酪胺酸去磷酸酶非接受器第二型;protein tyrosine phosphatase non-receptor type 2;酵母菌雙雜合技術;yeast two hybrid system
出版社: 分子生物學研究所
引用: 行政院衛生署九十五年死因統計 Albelda, S.M. (1993). Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Laboratory investigation; a journal of technical methods and pathology 68, 4-17. Andersen, J.N., Mortensen, O.H., Peters, G.H., Drake, P.G., Iversen, L.F., Olsen, O.H., Jansen, P.G., Andersen, H.S., Tonks, N.K., and Moller, N.P. (2001). Structural and evolutionary relationships among protein tyrosine phosphatase domains. Molecular and cellular biology 21, 7117-7136. Beltran, P.J., and Bixby, J.L. (2003). Receptor protein tyrosine phosphatases as mediators of cellular adhesion. Front Biosci 8, d87-99. Bourdeau, A., Dube, N., and Tremblay, M.L. (2005). Cytoplasmic protein tyrosine phosphatases, regulation and function: the roles of PTP1B and TC-PTP. Current opinion in cell biology 17, 203-209. Brady-Kalnay, S.M., and Tonks, N.K. (1995). Protein tyrosine phosphatases as adhesion receptors. Current opinion in cell biology 7, 650-657. Chang, X.Z., Li, D.Q., Hou, Y.F., Wu, J., Lu, J.S., Di, G.H., Jin, W., Ou, Z.L., Shen, Z.Z., and Shao, Z.M. (2007). Identification of the functional role of peroxiredoxin 6 in the progression of breast cancer. Breast Cancer Res 9, R76. Chen, J.J., Peck, K., Hong, T.M., Yang, S.C., Sher, Y.P., Shih, J.Y., Wu, R., Cheng, J.L., Roffler, S.R., Wu, C.W., et al. (2001). Global analysis of gene expression in invasion by a lung cancer model. Cancer research 61, 5223-5230. Cho, Y., Jones, B.F., Vermeire, J.J., Leng, L., DiFedele, L., Harrison, L.M., Xiong, H., Kwong, Y.K., Chen, Y., Bucala, R., et al. (2007). Structural and functional characterization of a secreted hookworm Macrophage Migration Inhibitory Factor (MIF) that interacts with the human MIF receptor CD74. The Journal of biological chemistry 282, 23447-23456. Cote, R.J., Hawes, D., Chaiwun, B., and Beattie, E.J., Jr. (1998). Detection of occult metastases in lung carcinomas: progress and implications for lung cancer staging. Journal of surgical oncology 69, 265-274. Deocampo, N.D., Huang, H., and Tindall, D.J. (2003). The role of PTEN in the progression and survival of prostate cancer. Minerva endocrinologica 28, 145-153. Diab, S., Geriniere, L., Carrie, C., and Souquet, P.J. (2004). [Treatment of lung cancer in the elderly]. Revue des maladies respiratoires 21, 8S59-69. Dimitroulis, J., and Stathopoulos, G.P. (2005). Evolution of non-small cell lung cancer chemotherapy (Review). Oncology reports 13, 923-930. Flohe, L., Budde, H., and Hofmann, B. (2003). Peroxiredoxins in antioxidant defense and redox regulation. BioFactors (Oxford, England) 19, 3-10. Galic, S., Hauser, C., Kahn, B.B., Haj, F.G., Neel, B.G., Tonks, N.K., and Tiganis, T. (2005). Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP. Molecular and cellular biology 25, 819-829. Gore, Y., Starlets, D., Maharshak, N., Becker-Herman, S., Kaneyuki, U., Leng, L., Bucala, R., and Shachar, I. (2007). Macrophage migration inhibitory factor (MIF) induces B cell survival by activation of a CD74/CD44 receptor complex. The Journal of biological chemistry. Grondin, S.C., and Liptay, M.J. (2002). Current concepts in the staging of non-small cell lung cancer. Surgical oncology 11, 181-190. Guilford, P. (1999). E-cadherin downregulation in cancer: fuel on the fire? Molecular medicine today 5, 172-177. Gupta, V., and Swarup, G. (2006). Evidence for a role of transmembrane protein p25 in localization of protein tyrosine phosphatase TC48 to the ER. Journal of cell science 119, 1703-1714. Hubbard, S.R. (1999). Structural analysis of receptor tyrosine kinases. Progress in biophysics and molecular biology 71, 343-358. Hubbard, S.R., and Miller, W.T. (2007). Receptor tyrosine kinases: mechanisms of activation and signaling. Current opinion in cell biology 19, 117-123. Ibarra-Sanchez, M.J., Simoncic, P.D., Nestel, F.R., Duplay, P., Lapp, W.S., and Tremblay, M.L. (2000). The T-cell protein tyrosine phosphatase. Seminars in immunology 12, 379-386. Ingram, J.L., and Bonner, J.C. (2006). EGF and PDGF receptor tyrosine kinases as therapeutic targets for chronic lung diseases. Current molecular medicine 6, 409-421. Jandt, E., Denner, K., Kovalenko, M., Ostman, A., and Bohmer, F.D. (2003). The protein-tyrosine phosphatase DEP-1 modulates growth factor-stimulated cell migration and cell-matrix adhesion. Oncogene 22, 4175-4185. Kamatkar, S., Radha, V., Nambirajan, S., Reddy, R.S., and Swarup, G. (1996). Two splice variants of a tyrosine phosphatase differ in substrate specificity, DNA binding, and subcellular location. The Journal of biological chemistry 271, 26755-26761. Klingler-Hoffmann, M., Fodero-Tavoletti, M.T., Mishima, K., Narita, Y., Cavenee, W.K., Furnari, F.B., Huang, H.J., and Tiganis, T. (2001). The protein tyrosine phosphatase TCPTP suppresses the tumorigenicity of glioblastoma cells expressing a mutant epidermal growth factor receptor. The Journal of biological chemistry 276, 46313-46318. Kodera, Y., Isobe, K., Yamauchi, M., Kondoh, K., Kimura, N., Akiyama, S., Itoh, K., Nakashima, I., and Takagi, H. (1994). Expression of nm23 H-1 RNA levels in human gastric cancer tissues. A negative correlation with nodal metastasis. Cancer 73, 259-265. Kurup, A., and Hanna, N.H. (2004). Treatment of small cell lung cancer. Critical reviews in oncology/hematology 52, 117-126. Kwak, S.P., and Dixon, J.E. (1995). Multiple dual specificity protein tyrosine phosphatases are expressed and regulated differentially in liver cell lines. The Journal of biological chemistry 270, 1156-1160. Lambrechts, A., Van Troys, M., and Ampe, C. (2004). The actin cytoskeleton in normal and pathological cell motility. The international journal of biochemistry & cell biology 36, 1890-1909. Lorenzen, J.A., Dadabay, C.Y., and Fischer, E.H. (1995). COOH-terminal sequence motifs target the T cell protein tyrosine phosphatase to the ER and nucleus. The Journal of cell biology 131, 631-643. Lue, H., Kapurniotu, A., Fingerle-Rowson, G., Roger, T., Leng, L., Thiele, M., Calandra, T., Bucala, R., and Bernhagen, J. (2006). Rapid and transient activation of the ERK MAPK signalling pathway by macrophage migration inhibitory factor (MIF) and dependence on JAB1/CSN5 and Src kinase activity. Cellular signalling 18, 688-703. Manevich, Y., and Fisher, A.B. (2005). Peroxiredoxin 6, a 1-Cys peroxiredoxin, functions in antioxidant defense and lung phospholipid metabolism. Free radical biology & medicine 38, 1422-1432. Matthews, R.J., Bowne, D.B., Flores, E., and Thomas, M.L. (1992). Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Molecular and cellular biology 12, 2396-2405. McCubrey, J.A., Steelman, L.S., Chappell, W.H., Abrams, S.L., Wong, E.W., Chang, F., Lehmann, B., Terrian, D.M., Milella, M., Tafuri, A., et al. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et biophysica acta 1773, 1263-1284. Mourton, T., Hellberg, C.B., Burden-Gulley, S.M., Hinman, J., Rhee, A., and Brady-Kalnay, S.M. (2001). The PTPmu protein-tyrosine phosphatase binds and recruits the scaffolding protein RACK1 to cell-cell contacts. The Journal of biological chemistry 276, 14896-14901. Mulholland, D.J., Dedhar, S., Wu, H., and Nelson, C.C. (2006). PTEN and GSK3beta: key regulators of progression to androgen-independent prostate cancer. Oncogene 25, 329-337. Rawlings, D.J., and Witte, O.N. (1995). The Btk subfamily of cytoplasmic tyrosine kinases: structure, regulation and function. Seminars in immunology 7, 237-246. Rhee, S.G., Chae, H.Z., and Kim, K. (2005). Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free radical biology & medicine 38, 1543-1552. Rhee, S.G., Kang, S.W., Chang, T.S., Jeong, W., and Kim, K. (2001). Peroxiredoxin, a novel family of peroxidases. IUBMB life 52, 35-41. Ruivenkamp, C.A., van Wezel, T., Zanon, C., Stassen, A.P., Vlcek, C., Csikos, T., Klous, A.M., Tripodis, N., Perrakis, A., Boerrigter, L., et al. (2002). Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers. Nature genetics 31, 295-300. Sahai, E., and Marshall, C.J. (2002). RHO-GTPases and cancer. Nat Rev Cancer 2, 133-142. Sansal, I., and Sellers, W.R. (2004). The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 22, 2954-2963. Simoncic, P.D., Bourdeau, A., Lee-Loy, A., Rohrschneider, L.R., Tremblay, M.L., Stanley, E.R., and McGlade, C.J. (2006). T-cell protein tyrosine phosphatase (Tcptp) is a negative regulator of colony-stimulating factor 1 signaling and macrophage differentiation. Molecular and cellular biology 26, 4149-4160. Smith, C.I., Islam, T.C., Mattsson, P.T., Mohamed, A.J., Nore, B.F., and Vihinen, M. (2001). The Tec family of cytoplasmic tyrosine kinases: mammalian Btk, Bmx, Itk, Tec, Txk and homologs in other species. Bioessays 23, 436-446. Spataro, V. (2005). [Treatment of lung cancer: critical review of new agents]. Revue medicale suisse 1, 575-581. Sreenath, T., Matrisian, L.M., Stetler-Stevenson, W., Gattoni-Celli, S., and Pozzatti, R.O. (1992). Expression of matrix metalloproteinase genes in transformed rat cell lines of high and low metastatic potential. Cancer research 52, 4942-4947. Stein, R., Mattes, M.J., Cardillo, T.M., Hansen, H.J., Chang, C.H., Burton, J., Govindan, S., and Goldenberg, D.M. (2007). CD74: a new candidate target for the immunotherapy of B-cell neoplasms. Clin Cancer Res 13, 5556s-5563s. Stephens, B.J., Han, H., Gokhale, V., and Von Hoff, D.D. (2005). PRL phosphatases as potential molecular targets in cancer. Molecular cancer therapeutics 4, 1653-1661. Stumptner-Cuvelette, P., and Benaroch, P. (2002). Multiple roles of the invariant chain in MHC class II function. Biochimica et biophysica acta 1542, 1-13. Traynor, A.M., and Schiller, J.H. (2004). Systemic treatment of advanced non-small cell lung cancer. Drugs Today (Barc) 40, 697-710.
摘要: 
According to statistical data in 2006 of Department of Health, the lung cancer is the main reason of death about malignant tumor in Taiwan, especially, adenocarcinomas is the most common one. Cancer is often caused by gene mutation, including oncogenes and tumor suppressor genes. Protein modification, such as phosphorylation and dephosphorylation, plays an important role to regulate many cellular responses including growth, metabolism and differentiation by activating different proteins. The aim of this study is to find which proteins interacting with PTPN2 (protein tyrosine phosphatase non-receptor type 2) by yeast two hybrid assay. PTPN2, belongs to PTP (protein tyrosine phosphatase) superfamily, is a signal transduction protein and regulates protein tyrosine phosphorylation through signal transduction pathway. PTP controls a diverse array of cellular responses including growth, proliferation, differentiation, migration, metabolism and survival. In this study, we utilized yeast two hybrid assay, and identified eight PTPN2-interacting proteins from human liver cDNA library. Previous work showed that CD74 (major histocompatibility complex class II invariant chain) and PRDX6 (Peroxiredoxin 6) could promote cell proliferation. Therefore, CD74 and PRDX6 were demonstrated in this study, and they are indeed confirmed to interact with PTPN2 by using co-immunoprecipitation. Additionally, the cell functions were also assayed under PTPN2 over- expression in cell. By immunofluorescent staining, we found that PTPN2 located in endoplasmic reticulum (ER). Overexpression of PTPN2 could significantly promote lung cancer cell proliferation by MTT assay, anchorage-dependent growth and anchorage-independent growth and increase the expression of phospho-ERK. However, PTPN2 had no effect on invasive and migrative ability. Taken together, we speculated that PTPN2 might promote lung cancer cell proliferation through ERK phosphorylation, and it needed more efforts to study in the future. By means of this study we provided a putative mechanism of modulating lung cancer cell proliferation, which might benefit to the development of target therapy in the future.

根據行政院衛生署九十五年的統計資料顯示,肺癌為台灣地區惡性腫瘤首要死亡原因,其中又以肺腺癌最為常見。通常癌症是因為細胞的基因變異所引起的,這些基因包含致癌基因及抑癌基因。在細胞中,磷酸化和去磷酸化蛋白扮演了重要角色,其可藉由活化不同的蛋白來調控細胞內各項反應,包含細胞內的生長、代謝、分化作用等,全面性的影響細胞中各項生理機制。本研究的目的,是利用酵母菌雙雜合系統(yeast two hybrid system)找出與酪胺酸去磷酸酶非接受器第二型(protein tyrosine phosphatase non-receptor type 2,PTPN2)有交互作用的蛋白質。 PTPN2屬於PTP(protein tyrosine phosphatase)superfamily中的一員,而PTP是一種細胞訊息分子,利用訊息傳遞調控酪胺酸去磷酸化。PTP可調控細胞內多項反應,包含:生長、增殖、分化、遷徙、代謝、存活。在本研究中,已經利用酵母菌雙雜合技術,從人類肝臟cDNA基因庫中,篩選出八個與PTPN2有交互作用的蛋白質。前人研究發現,CD74(major histocompatibility complex class II invariant chain)及PRDX6(Peroxiredoxin 6)會促使細胞增生。因此,挑選CD74及PRDX6做後續實驗。利用免疫共沉澱法(Co-immunoprecipi tation),也證實兩者之間有交互作用。此外,也藉由大量表現PTPN2蛋白以觀察對細胞行為的影響。經由免疫螢光染色實驗,發現PTPN2分佈在細胞的內質網。根據MTT試驗、細胞貼附性生長(anchorage-dependent growth)及細胞非貼附性生長(anchorage-independent growth)實驗結果發現,PTPN2會促進肺癌細胞CL1-0及H1299的細胞增生,並且造成細胞內磷酸化的ERK增加。然而,PTPN2對CL1-0、CL1-5及H1299細胞的侵襲能力及遷移能力並沒有顯著的影響。因此我們推測,PTPN2會藉由調控磷酸化的ERK,而造成肺癌細胞增生的現象。這個推測仍需做進一步的研究與探討,詳細的作用機制也需後續實驗加以證明。藉由此研究我們可以提供一個調控肺癌細胞增生的機制,或許在未來可以應用在癌症治療上。
URI: http://hdl.handle.net/11455/21890
其他識別: U0005-3001200815182300
Appears in Collections:分子生物學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.