Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22004
標題: 利用轉殖植物生產VVYP活性胜肽及特殊胺基酸組成RMGK之研究
Production of bioactive peptides VVYP and special amino acid component RMGK in transgenic plants
作者: 林家夙
Lin, Jia-Sue
關鍵字: transgenic soybean;轉殖水稻;transgenic rice;bioactive peptide(VVYP);fish meal;活性胜肽(VVYP);魚粉
出版社: 分子生物學研究所
引用: 陳介武 (1999) 胜肽與您的健康。美國黃豆出口協會。 曾富生、吳詩都 (1996) 大豆。農藝。三民書局。 張玉瓏、徐乃芝、許素菁 (2003) 生物技術。新文京開發出版社。 李寬志 (2000) 轉基因水稻生產D-hydantoinase之研究,中興大學分子生物學研 究所碩士論文。 楊炳輝 (2000) 豆奶加工技術。食品工業月刊 32, 52-59。 劉明宗 (2002) 除草劑抗性的發展:抗性雜草和抗性作物。中華民國雜草學會會 刊第二十三卷第一期。 邱華賢 (2005) 生物科技概論 第二版。學富文化事業有限公司出版。 誼晟 (2006) 技術資訊。誼晟實業股份有限公司品保技術部。 鄭麗珠 (2007) 利用轉基因植物生產活性胜肽及醫藥工業用酵素之研究,中興大學分子生物學研究所碩士論文。 馮潔雯 (2008) 純化及分析大腸菌中大量表現之大豆proglycinin Gy5改造蛋白,中興大學分子生物學研究所碩士論文。 黃巧宜 (2008) 利用農桿菌媒介轉殖法改造大豆種子組成份,中興大學農藝學研究所碩士論文。 Abel, H.K., Becker, K., Meske, C.H.R. and Friedrich, W. (1984). Possibilities of using heat-treated full-fat soybeans in carp feeding. Aquaculture 42, 97-108. Adachi, M., Takenaka, Y., Gidamis, A.B., Mikami, B. and Utsumi, S. (2001). Crystal structure of soybean proglycinin A1aB1b homotrimer. J Mol Biol 305, 291-305. Adachi, M., Kanamori, J., Masuda, T., Yagasaki, K., Kitamura, K., Mikami, B. and Utsumi, S. (2003). Crystal structure of soybean 11S globulin: glycinin A3B4 homohexamer. Proc Natl Acad Sci U S A 100, 7395-7400. Adibi, S.A. (1971). Intestinal transport of dipeptides in man: relative importance of hydrolysis and intact absorption. J Clin Invest 50, 2266-2275. Barta, A., Sommergruber, K. and Thompson, D. (1986). The expression of a nopaline synthase human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue Plant Mol Biol 6, 347-357. Beilinson, V., Chen, Z., Shoemaker, C., Fischer, L., Goldberg, B. and Nielsen, C. (2002). Genomic organization of glycinin genes in soybean. Theor Appl Genet 104, 1132-1140. Bikfalvi A., Klein S., Pintucci G. and Rifkin D.B. (1997). Biological roles of fibroblast growth factor-2. EndocrRev 18, 26-45. Brooks, J.R. and Morr, C.V. (1985). Current aspects of soy protein fractionation and nomenclature. J Am Oil Chem 62, 1347-1354. Cao, J., Duan, X.L. and McElroy, D. (1992). Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells. Plant Cell Rep11, 586-591. Castelli, W.P. (1986). The triglyceride issue: a view from Framingham. Am Heart J 112, 432-437. Chao, Y.Y., Liu, L.F. and Chang, M.C. (2007). Expression of an ABA-induced OsMAPK3 in transgenic rice (Oryzasativa. L) increases paraquat resistance.Crop, Environment & Bioinformatics 4, 185-200 Cheng, E., Cardenas-Freytag, L. and Clements, J.D. (1999). The role of cAMP inmucosal adjuvanticity of Escherichia coli heat-labile enterotoxin (LT). Vaccine 18(1–2), 38-49. Corporation, K. (2001). Recent progress in research and technology on soybean. food. Sci Technol Res 7, 8-16. Crabb, W.D. and Bolin, J. (1999). Protein technologies and commercial enzymes. Curr. Opin. Biotechnol 10, 321-323. Delrieu I. (2000). The high molecular weight isoforms of basic fibroblast growth factor (FGF-2): an insight into an intracrine mechanism. FEBS Lett 468, 6-10. Dickinson, C.D., Hussein, E.H. and Nielsen, N.C. (1989). Role of posttranslational cleavage in glycinin assembly. Plant Cell 1, 459-469. Ding, S.H., Huang, L.Y., Wang, Y.D., Sun, H.C. and Xiang, Z.H. (2006). High-level expression of basic fibroblast growth factor in transgenic soybean seeds and characterization of its biological activity. Biotechnol Lett 28, 869-875. Fischer, R., Stoger, E., Schillberg, S., Christou, P. and Twyman, R.M. (2004). Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7, 152-158. Fladung, M. (1999). Gene stability in transgenic aspen (Populus). I. Flanking DNA sequences and T-DNA structure. Mol. Gen. Genet 260, 574-581. Hara, H., Funabiki, R., Iwata, M. and Yamazaki, K. (1984). Portal absorption of small peptides in rats under unrestrained conditions. J Nutr 114, 1122-1129. Hardy, R.H. (1999). Aquaculture’s rapid growth requirements for alternate protein sources. Feed Management 50, 25-28 Harrison, L.A., Bailey, M.R., Naylor, M.W., Ream, J.E., Hammond, B.G., Nida, D.L., Burnette, B.L., Nickson, T.E., Mitsky, T.A., Taylor, M.L., Fuchs, R.L. and Padgette, S.R. (1996). The expressed protein in glyphosate-tolerant soybean, 5-enolypyruvyl shikimate-3-phosphate synthase from agrobacterium sp. Strain CP4, is rapidly digested in vitro and is not toxic to acutely gavaged mice. J. Nutr. 126, 728-740. Joersbo, M., Brunstedt, J., Marcussen, J. and Okkels, F.T. (1999). Transformation of the endospermous legume guar (Cyamopsis tetragonoloba L.) and analysis of transgene transmission. Mol. Breed 5, 521-529. Kagawa, K., Matsutaka, H., Fukuhama, C., Watanabe, Y. and Fujino, H. (1996). Globin digest, acidic protease hydrolysate, inhibits dietary hypertriglyceridemia and Val-Val-Tyr-Pro, one of its constituents, possesses most superior effect. Life Sci 58, 1745-1755. Kawahigashi, H., Hirose, S., Inui, H., Ohkawa, H. and Ohkawa, Y. (2005). Enhanced herbicide cross-tolerance in transgenic rice plants co-expressing human CYPIAI CYP2B6 and CYP2CI9. Plant Sci 168, 773-781. Koshiyama, I. (1983). Storage protein of soybean. In W. Gottschalk and H. P. Muller (ed.) Seed proteins: Biochemistry, genetics, nutritive value. Nijhoff/Junk, The Hague 427-450. Kost, T.A. and Condreay, J.P. (1999). Recombinant baculoviruses as expression vectors for insect and mammalian cells. Curr. Opin. Biotechnol. 10, 428-433. Kung, S.D. and Wu, R. (1993). Transgenic plants. (San Diego: Academic Press, Inc.) Lei, M.G. and Reeck, G.R. (1987). Two-dimensional electrophoretic analysis of the proteins of isolated soybean protein bodies and of the glycosylation of soybean proteins. J Agric Food Chem 35, 296-300. Lubiniecki, A.S. and Lupker, J.H. (1994). Purified protein products of rDNA technology expressed in animal cell culture. Biologicals 22, 161-169. Mao, E. Q., Tang, Y. Q. and Zhang, S. D.(2003). Formalized therapeutic guideline for hyperlipidemic severe acute pancreatitis. World J Gastroenterol 9, 2622- 2626. Millar, D.G., Hirst, T.R. and Snider, D.P. (2001). Escherichia coli heat-labile enterotoxin B subunit is a more potent mucosal adjuvant than its closely related homologue, the B subunit of cholera toxin. Infect Immun 69(5), 3476-82. Miwa, M. (2000). Development of functional foods based on physiological activity of amino acids and peptides in Japan. Biofactors 12, 161-165. Moravec, Tomas., Schmidt, M.A., Herman, E.M. and Thomas, T.W. (2007). Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine .Vaccine 25, 1647-1657. Nandi, S., Yalda, D., Lu, S., Nikolov, Z., Misaki, R., Fujiyama, K. and Huang, N. (2005) Process development and economic evaluation of recombinant human lactoferrin expressed in rice grain. Transgenic Res 14, 237-249. Nielsen, N.C. (1985). The structure and complexity of the 11S polypeptides in soybeans Journal of the American Oil Chemists'' Society 62, 1680-1686. Nielsen, N.C., Dickinson, C.D., Cho, T.J., Thanh, V.H., Scallon, B.J., Fischer, R.L., Sims, T.L., Drews, G.N. and Goldberg, R.B. (1989). Characterization of the glycinin gene family in soybean. Plant Cell 1, 313-328. NRC, National Research Council, (1993). Nutrient requirements of fish. Report 114, National Academy Press, Washington, DC. Omoni, A.O. and Aluko, R.E. (2005). Soybean foods and their benefits: potential mechanisms of action. Nutr Rev 63, 272-283. Onishi, K., Matoba, N., Yamada, Y., Doyama, N., Maruyama, N., Utsumi, S. and Yoshikawa, M. (2004). Optimal designing of beta-conglycinin to genetically incorporate RPLKPW, a potent anti-hypertensive peptide. Peptides 25, 37-43. Pongmaneerat, J., Watanabe, T., Takeuchi, T. and Satoh, S. (1993). Use of different protein meals as partial or total substitution for fish meal in carp diets. Nippon Suisan Gakkaishi 59,1249-1257. Prak, K., Nakatani, K., Katsube-Tanaka, T., Adachi, M., Maruyama, N. and Utsumi, S. (2005). Structure-function relationships of soybean proglycinins at subunit levels. J Agric Food Chem 53, 3650-3657. Prak, K., Maruyama, Y., Maruyama, N. and Utsumi, S. (2006). Design of genetically modified soybean proglycinin A1aB1b with multiple copies of bioactive peptide sequences. Peptides 27, 1179-1186. Qu, L.Q. and Takaiwa, F. (2004). Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotechnol J 2, 113-125. Romano, E., Soares, A., Proit,e K., Neiv, S., Grossi, M., Faria, J. C., Rech, E. L. and Aragão, F. J.L. (2005) Transgene elimination in genetically modified dry bean and soybean lines. Genet. Mol. Res. 4 (2), 177-184 Srivastava, V., Vasil, V. and Vasil, I.K. (1996). Molecular characterization of the fate of transgenes in transformed wheat (Triticum aestivum L.). Theor. Appl. Genet 92, 1031-1037. Staswick, P.E., Hermodson, M.A. and Nielsen, N.C. (1984). Identification of the cystines which link the acidic and basic components of the glycinin subunits. J Biol Chem 259, 13431-13435. Streatfield, S.J.(2007).Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnology Journal 5, 2-15 Takaiwa, F., Kikuchi, S. and Oono, K. (1987). A rice glutelin family—a major type of glutelin mRNAs can be divided into two classes. Mol. Gen. Genet 208, 15-22. Takaiwa, F., Takagi, H., Hirose, S. and Wakasa, Y. (2007). Endosperm tissue is good production platform for artificial recombinant proteins in transgenic rice. Plant Biotechnol J. 5, 84-92. Takaiwa, F., Sakuta, C., Choi, S. K., Tada, Y ., Motoyama, T. and Utsumi, S. (2008). Co-Expression of soybean glycinins A1aB1b and A3B4 enhances their accumulation levels in transgenic rice seed. Plant Cell Physiol 49(10), 1589-1599. Utsumi, S., Maruyama, N., Satoh, R. and Adachi, M. (2002). Structure-function relationships of soybean proteins revealed by using recombinant systems. Enzyme and Microbial Technology 30, 284-288. Viola, S., Mokady, S., Rappaport, U. and Arieli, Y. (1981/1982). Partial and complete replacement of fishmeal by soybean meal in feeds for intensive culture of carp. Aquaculture 26, 223-236. Ye, X., Al-Babili, S., Kloti, A., Zhang, J., Lucca, P., Beyer, P. and Potrykus, I. (2000). Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287, 303-305. Yukawa, K., Kaku, H., Tanaka, H., Koga-Ban, Y. and Fukuda, M. (2008). Enhanced soybean infection by the legume ‘‘super-virulent’’agrobacterium tumefaciens strain KAT23. Biosci. Biotechnol. Biochem 72 (7), 1809–1816.
摘要: 
本研究利用基因工程技術,以大豆為生物反應器大量表現活性胜肽VVYP及特殊胺基酸RMGK。活性胜肽VVYP (Val-Val-Tyr-Pro)具有降低三酸甘油脂的能力進而抑制脂肪的吸收,能有效抑制血液中三酸甘油脂的含量,減少心血管疾病的發生。在許多的雜食性淡水魚類養殖生產中,飼料配方主要來自大豆的原料已有多年的歷史,利用大豆粉取代較為昂貴的魚粉,可大幅降低魚產品的生產成本。然而與魚粉成份相比較,methionine與lysine是大豆產品中含量較缺乏的胺基酸,因此可利用基因工程在大豆基因組中加入這些胺基酸,並添加glycine及arginine增加魚類對大豆粉的嗜口性及提高魚類對疾病的抵抗性。已知固殺草 (phosphinothricin, PTT)可抑制植物體行光合及光呼吸作用而導致植物體死亡。因此本研究將選用抗PTT之bar作為篩選基因,建立大豆轉殖phosphinothricin篩選系統,以利大豆轉殖株之篩選,經由統計分析,6 及5 mg/L PTT分別為再生芽體及轉殖株後代最適當之篩選濃度。目前已經藉由農桿菌轉殖獲得135株大豆再生植株,然而以PCR及南方點墨法確認僅有一株再生植株含有轉殖基因Gy5-10RMGK,且其轉殖基因無法順利遺傳到下一代。到目前為止,由於大豆轉殖技術尚無法突破,無法得知含有VVYP及RMGK之構築是否能於植物體正常表現外源性蛋白,因此先將這些構築轉殖至水稻,進一步分析外源蛋白的表現情形,以確認此策略之可行性。利用持續性表現之35S 啟動子,構築含活性胜肽之Gy5-10VVYP及含特殊胺基酸之Gy1-10RMGK載體,藉由農桿菌進行水稻轉殖,本研究室總共獲得16株35S-Gy5-10VVYP及20株35S-Gy1-10RMGK水稻轉殖株,以PCR及南方點墨法確認這些轉殖水稻皆含轉殖基因,並以西方點墨法分析葉片及種子蛋白,確認這些轉殖水稻皆可表現重組蛋白Gy5-10VVYP或Gy1-10RMGK。

The aims of this study are to enhance the expression of bioactive peptide VVYP and special amino acid sequences RMGK in soybean and rice by genetic modification. The bioactive peptides Val-Val-Tyr-Pro (VVYP) is one of the well known effective materials to suppress the triglyceride absorption of intestinal tract and to reduce the blood cholesterol. It has been of continuing interest in developing new protein source as alternative fish meal in aquafeeds. The methionine and lysine components of soybean meal are less than fish meal. This study intends to improve the nutritional qualities by incorporating more methionine and lysine codons into a soybean storage protein gene named gy5. In addition, glycine and arginine are also added to increase the palatability of soybean meal. In this study, a transformation system using phosphinothricin (PPT) as selection marker was established and more than 135 regenerated soybean plants through agrobacterium-mediated transformation with various constructs were obtained. PCR and Southern blot assays demonstrated that only one out of 135 lines contains transgene but this transgene did not transfer to the next generation. The reason why so little transgenic line obtained and the only one identified transgenic line did not pass its transgene to the next generation is discussed in detail in the text. Since no stable transgenic soybean was obtained, the expression of engineered VVYP or RMGK-containing protein from the constructs created in this study can not be confirmed. We therefore transformed Gy5-10VVYP and Gy1-10RMGK constructs driven by CaMV35S promoter into rice to see whether or not these modified soybean storage proteins can be expressed. Sixteen transgenic lines with 35S-Gy5-10VVYP construct and 20 transgenic lines with 35S-Gy1-10RMGK construct were obtained and their transgenes were identified by PCR and Southern blot assays. Western blot analyses demonstrated that all transgenic lines tested contain modified soybean storage proteins.
URI: http://hdl.handle.net/11455/22004
其他識別: U0005-1008200922345700
Appears in Collections:分子生物學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.