Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2203
標題: CMOS-MEMS微鏡面陣列與可調式微共振器
CMOS-MEMS micro mirror array and tunable micro resonator
作者: 高斌栩
Kao, Pin-Hsu
關鍵字: CMOS process;CMOS製程;resonator;micromirro;micro resonator;MEMS;共振器;微鏡面;微共振器;MEMS
出版社: 機械工程學系所
引用: 1. Liu, M.C.; Dai, C.L.; Chan, C.H.; Wu, C.C. Manufacture of a polyaniline nanofiber ammonia sensor integrated with a readout circuit using the CMOS-MEMS technique, Sensors, 2009, 9, 869-880 2. Dai, C.L.; Tai, Y.W.; Kao, P.H. Modeling and Fabrication of Micro FET Pressure Sensor with Circuits. Sensors, 2007, 7, 3386-3398. 3. Kim, J.W.; Takao, H.; Sawada, K.; Ishida, M. Integrated inductors for RF transmitters in CMOS/MEMS smart microsensor systems. Sensors, 2007, 7, 1387-1398. 4. Kao, P.H.; Dai, C.L.; Hsu, C.C.; Lee, C.Y. Fabrication and characterization of a tunable in-plane resonator with low driving voltage. Sensors, 2009, 9, 2062-2075. 5. 邱建清, 黃世疇, 工程科技與教育學刊, 2006. 6. Chang, L. Foundations of MEMS, New Jersey Prentice Hall, 2006. 7. 楊志仁, 屏東科技大學碩士論文, 2006. 8. 奈米科技研發中心, 奈米辭典, PZT ,2005. 9. 交通部電信總局, 電信相關統計, 2002. 10. 江銘昭, 國立中興大學碩士論文, 2007. 11. Hoskinson, R.; Stoeber, B. High-dynamic range image projection using an auxiliary MEMS mirror array. Opt. Express 2008, 16, 7361-7368. 12. Li, L.; Begbie, M.; Brown, G.; Uttamchandani, D. Design, simulation and characterization of a MEMS optical scanner. J. Micromec. Microen. 2007, 17, 1781-1787. 13. Lee, W.J.; Hwang, S.H.; Lim, J.W.; Rho, B.S. Polymeric waveguide film with embedded mirror for multilayer optical circuits. Photon. Technol. Lett. 2009, 21, 12-14. 14. Lee, H.S.; Cho, C.; Cho, M.W. Magnetostrictive micro mirrors for an optical switch Matrix. Sensors. 2007, 7, 2174-2182. 15. Yang, J.B.; Su, X.Y., Optical implementation of a polarization-independent bidirectional 3×3 optical switch. Photon. Network Commun., 2008, 15, 153-158. 16. Liao, C.D.; Tsai, J.C., The evolution of MEMS displays. IEEE Transac. Indust. Electron. 2009, 56, 1057-1065. 17. Hombeck, L., Deformable Mirror Spatial Light Modulators, Proc. SPIE, 1989, 1105, 86-102. 18. Hornbeck, L. J., Digital Light Processing and MEMS: anoverview advanced applications of lasers in materials pro-cessing. Summer topical meetings: Broadband OpticalNetworks/Smart Pixels/Optical MEMS and their applications, 1996, 7-8. 19. Lee, S. S.; Motamedi, E.; Wu, M. C.; Surface-micromachined free-space fiber optic switches with integrated microactuators for optical fiber communication systems. Int Conf Solid State Sensors and Actuators, 1997, 85-88. 20. Lin, L. Y.; Goldstein, E. L.; Tkach, R. W.; Free-space micromachined optical switches with submillisecond switch- ing time for large-scale optical crossconnects, IEEE Photonics Technol Lett ,1998 ,10, pp. 525-527. 21. Lin, L.Y.; Goldstein, E.L.; Tkach, R.W. Free-space micromachined optical switches for optical networking, IEEE Journal on Selected Topics in Quantum Electronics, 1999, 5, 4-9,. 22. Lin, L. Y.; Lin, Goldstein E. L. MEMS for free-space optical switching, 12th IEEE Annual Meeting Lasers and Electro-Optics Society, 1999, 483-484. 23. Lin, L.; Lin, Y. Free-space micromachined optical-switchingtechnologies and architectures. Optical Fiber Communi-cation Conference and the International Conference on Inte-grated Optics and Optical Fiber Communication, 1999, 44, 154-156. 24. Aksyuk, V. A., Pardo, C.A. Bolle, S. Arney, C. C. R. Giles, D. J. Bishop, “Lucent Microstar Micromirror Array Technology for Large Optical Crossconnects,” Proceeding SPIE, 2000, 4178, 320-324,. 25. Kim, Tae-Sik; Lee, Sang-Shin; Yee, Youngjoo; Bu, Jong-Uk; Park, Chil-Geun; Ha, Man-Hyo, Large tilt angle electrostatic force actuated micro-mirror, IEEE Photonics Technology Letters, 2002, 14, pp. 1569-1571. 26. Hah, C.A.; Choi, C. H.; Jun, Y. T. Kim, A self-aligned vertical comb-drive actuator using surface micromachining for scanning micromirrors, IEEE/LEOS Int Conf Optical MEMS, 2003, 151-152. 27. Chiou, J.C.; Lin, Y. C. A multiple electrostatic electrodes torsion micromirror device with linear stepping angle effect. J. Microelectromech. Syst. 2003, 12, 913-920. 28. Yuan, L.; Yi, Z. Improvement of a silicon-based non-silicon torsion micro-mirror for optical switch, Proceedings of SPIE - The International Society for Optical Engineering, 2005, 275-282. 29. Cheng, Y. C.; Dai, C. L.; Dai, Lee C. Y.; Chen, P. H.; Chang, P. Z. A circular micromirror array fabricated by a maskless post-CMOS process, Microsystem Technologies, 2005, 11, 444-451. 30. Mitsui, T.; Takahashi, Y.; Watanabe, Y. A 2-axis optical scanner driven nonresonantly by electromagnetic force forOCT imaging, J. Micromech. Microeng. 2006, 16, 2482–2487. 31. Li, L.; Begbie, M.; Brown, G.; Uttamchandani, D. Design, simulation and characterization of a MEMS optical scanner Journal of Micromechanics and Microengineering, 2007, 17, 1781-1787. 32. Milanovi’c, V.; Castelino, K.; McCormick, D. Highly adaptable MEMS-based display with wide projection angle IEEE Int. Conf. MEMS, 2007, 143–146. 33. Jang, Y. H.; Kim, Y. K. Pull-in voltage uniformity analysis of digitally operated micromirror array with torsional springs. J. Micromech. Microeng. 2009, 19, 1-11. 34. Lee, W. H.; Su, C. Y.; Chung, Y. C. A study on bandwidth enhancement of 900/1800 dual band LTCC chip antenna by using equivalent circuit analysis, International Journal of RF and Microwave Computer-Aided Eng., 2008, 18, 120-127. 35. Dai, C.L.; Kuo, C.H.; Chiang, M.C. Microelectromechanical resonator manufactured using CMOS-MEMS technique. Microelectron. J. 2007, 38, 672–677. 36. Nathanson, H. C.; Newell, W. E.; Wickstrom, R. A.; Davis, Jr. J. R. The resonant gate transistor, IEEE Trans. on Electorn Devices, 1967, 14, 117-133. 37. Tang, W. C.; Nguyen, T. H.; Howe, R. T. Laterally driven polysilicon resonant microstructures, Sensors and actuators, 1989, 20, 25-32. 38. Nguyen, C. T. C.; Howe, R. T. Quality factor control for micromechanical resonators, IEEE Electron Devices Meeting, 1992, 505-508. 39. Nguyen, C. T. C.; Howe, R. T. Design and performance of CMOS micromechanical resonator oscillators, IEEE International Frequency Control Symposium, 1994, 127-134. 40. Nguyen, C. T. C. Micromechanical resonators for oscillators and filters, IEEE Ultrasonics Symposium, 1995, 489-499. 41. Yao, J. J.; MacDonald, N. C. Micromachined, single-crystal silicon, tunable resonator, Journal of Micromechanics and Microengineering, 1996, 5, 257-264. 42. Lee, K. B.; Cho, Y. H. Electrostatic control of mechanical quality factors for surface-micromachined lateral resonators, Journal of Micromechanics and Microengineering, 1996, 6, 426-430. 43. Lee, K. B.; Cho, Y. H. Frequency tuning of a laterally driven microresonator using an electrostatic comb array of linearly varied length, IEEE International Conference on Solid-State Sensors and Actuators, 1997, 113-116. 44. Ayazi, F.; Najafi, K. High aspect-ratio combined poly and single-crystal silicon (HARPSS) MEMS technology, Journal of Microelectromechanical Systems, 2000, 9, 288-294. 45. Xie, H.; Erdmann, L.; Zhu, X.; Gabriel, K. J.; Fedder, G. K. Post-CMOS processing for high-aspect-ratio integrated silicon microstructures, Journal of Microelectromechanical Systems, 2002, 11, 93-101. 46. Dai, C. L.; Yu, W. C. A micromachined tunable resonator fabricated by the CMOS post-process of etching silicon dioxide, Microsystem Technologies, 2006, 12, 766-772. 47. Dai, C.L.; Kuo, C.H.; Chiang, M.C. Microelectromechanical resonator manufactured using CMOS-MEMS technique, Microelectron. J. 2007, 38, 672–677. 48. Lee, J. E. Y.; Yan, J.; Seshia, A. A. Low loss HF band SOI wine glass bulk mode capacitive square-plate resonator, Journal of Micromechanics and Microengineering, 2009, 19, 1-10 49. Nathanson, H. C. ; Newell, W. E.; Wickstrom, R. A.; Davis, Jr., J. R. The resonant gate transistor, IEEE Trans. Electron Device, 1967, ED-14, 117-133. 50. Rao S. S. Mechanical Vibration, Addison-Wesley Publishing Co.: Reading, MA, 1990, 137-143. 51. K. B. Lee, L. Lin, Y. H. Cho, “A closed-form approach for frequency tunable comb resonators with curved finger contour,” Sens. Actuat. A, 2008, 141, pp. 523-529. 52. Lee, S.H.; Evans, J.W.; Jeon, J.U.; Kwon, D. Evaluation of elastic modulus and yield strength of Al film using an electrostatically actuated test device. Thin Solid Films 2002, 408, 223-229. 53. Callister, W.D. Materials Science and Engineering an Introduction, John Wiley & Sons: New York, USA, 2003.
摘要: 
本文研究利用0.35 μm 標準半導體CMOS製程技術,設計和製作一組應用於共焦顯微鏡掃描機構之,高頻微鏡面陣列結構,與機械式可調頻微共振器。微鏡面結構與共振器結構皆利用金屬鋁的材質所構成,並以二氧化矽作為犧牲層結構,後製程部分僅需一道無光罩式濕式蝕刻步驟,將二氧化矽犧牲層蝕刻,即可完成結構的懸浮。由於微結構利用標準半導體製程所製作,因此十分具有潛力,可將結構整合電路於單一晶片上,本文利用牛頓運動定律,推導出相關結構的運動方程式,以作為尺寸設計時的依據。微鏡面陣列結構部份,包含了一組圓形的鏡面平台,與排列於鏡面四周互相對稱的懸臂梁,鏡面的下方設計了四組四分之ㄧ圓形的驅動電極,用來驅動並且有效控制圓形鏡面的旋轉方向。微鏡面結構的量測儀器包含了一組微機電動態分析儀系統與共軛焦3-D表面輪廓量測系統,透過這些測量儀器,可以測試微鏡面的性能與鏡面陣列之表面輪廓。實驗結果顯示,當驅動電壓為40 V時,此微鏡面結構具有最大旋轉角約為2.55°,其自然共振頻率為59.1 kHz,此性能特性已符合共焦顯微鏡掃描機構之應用。共振器部分包含了三個部份:驅動端、調變端與感測端,驅動端通電後,可提供驅動力使共振器振動,感測端外接一組感測電路,當結構開始振動時,施加直流偏壓於調變端,使得共振頻率因而發生改變。實驗結果顯示,當驅動電壓為10 V時,此微共振器的共振頻率約為183 kHz,在調變端施加30 V之直流偏壓後,共振頻率可提升至197 kHz,調變率約為7.6 %,其Q值約為400。

This study used the commercial 0.35 µm CMOS (complementary metal oxide semiconductor) process and a simple maskless post-process to fabricate an array of micromirrors which is applied on the confocal microscopy system and a tunable resonator. They were made of aluminum; the sacrificial layer was silicon dioxide. The post-process involved only one maskless wet etching to remove the sacrificial layer, and to release the micro structure. These micro structure were compatible with the standard CMOS process, they have a potential to combine with integrated circuits on a chip.
The micromirror array contained a circular membrane and four fixed beams set symmetrically around. A MEMS (micro electromechanical system) motion analysis system and a confocal 3D-surface topography analysis system were used to characterize the properties of the micromirror array. Experimental results showed that the micromirror had a tilting angle of about 2.55° when applying a driving voltage of 40 V. The natural frequency of the micromirrors was 59.1 kHz.
In addition to, the resonator included three parts: a driving part to provide a driving force, a sensing part that was used to detect a change in capacitance when the resonator was vibrating, and a tuning part that changed the resonant frequency of the resonator. The main advantages of the tunable resonator were a low driving voltage and compatibility with the CMOS process. Experimental results showed that the resonator had a resonant frequency of about 183 kHz and a driving voltage of 10 V; the resonant frequency reached 197 kHz when a tuning voltage of 30 V was applied. The resonator had a maximum frequency-tuning ratio of 7.6%.
URI: http://hdl.handle.net/11455/2203
其他識別: U0005-0402201002280600
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.