Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22034
DC FieldValueLanguage
dc.contributor何國榮zh_TW
dc.contributorGuor-Rong Heren_US
dc.contributor邱勝賢zh_TW
dc.contributor王強生zh_TW
dc.contributor陳良築zh_TW
dc.contributorSheng-Hsien Chiuen_US
dc.contributorChan-sen Wangen_US
dc.contributorLiang-Jwu Chenen_US
dc.contributor.advisor賴建成zh_TW
dc.contributor.advisorChien-Chen Laien_US
dc.contributor.author鄭宇翔zh_TW
dc.contributor.authorCheng, Yu-Hsiangen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T07:17:03Z-
dc.date.available2014-06-06T07:17:03Z-
dc.identifierU0005-1708200917552200zh_TW
dc.identifier.citation卓緯玄。2007。水稻台農67號突變品系萌芽期與秧苗期耐鹽性之生理分析。國立中興大學生命科學研究所碩士論文。 卓緯玄、陳治官、賴明信、顏信沐、曾東海、顏宏真。2008。水稻秧苗期耐鹽性之篩選技術。臺灣農業研究 57 : 193-204. Ben-Hayyim G, Gueta-Dahan Y, Avsian-Kretchmer O, Weichert H, Feussner I. Preferential induction of a 9-lipoxygenase by salt in salt-tolerant cells of Citrus sinensis L. Osbeck. Planta. ( 2001 ) 212 : 367 - 375. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. (1976 ) 72 : 248 - 254. Caruso G, Cavaliere C, Guarino C, Gubbiotti R, Foglia P, Laganà A. Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Analytical and Bioanalytical Chemistry. ( 2008 ) 391 : 381-390. Chen Z, Hong X, Zhang H, Wang Y, Li X, Zhu JK, Gong Z. Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. The Plant Journal. ( 2005 ) 43 : 273-83. Denis N, Vasilescu J. Tryptic digestion of ubiquitin standards reveals an improved strategy for identifying ubiquitinated proteins by mass spectrometry. Proteomics. ( 2007 ) 7:868-874. Denison C, Kirkpatrick DS. Proteomic insights into ubiquitin and ubiquitin-like proteins. Current Opinion in Chemical Biology. ( 2005 ) 9:69-75. Gévaudant F, Duby G, von Stedingk E, Zhao R, Morsomme P, Boutry M. Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance. Plant Physiology. ( 2007 ) 144 : 1763-1776. Grabbe C, Dikic I. Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins. Chemiacl Reviews. ( 2009 ) 109 : 1481-1494. Haglund K, Dikic I. Ubiquitylation and cell signaling. EMBO Journal . ( 2005 ) 24:3353–3359. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology. ( 2000 ) 51 : 463-499. Igawa T, Fujiwara M, Takahashi H, Sawasaki T, Endo Y, Seki M, Shinozaki K, Fukao Y, Yanagawa Y. Isolation and identification of ubiquitin-related proteins from Arabidopsis seedlings. Journal of Experimental Botany. ( 2009 ) 60 : 3067-3073. Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Molecular & Cellular Proteomics. ( 2005 ) 4 : 1265-1272. Jeon HB, Choi ES, Yoon JH, Hwang JH, Chang JW, Lee EK, Choi HW, Park ZY, Yoo YJ. A proteomics approach to identify the ubiquitinated proteins in mouse heart. Biochemical and Biophysical Research Communications. 2007 Jun 8;357(3):731-6. Jeong MJ, Park SC, Byun MO. Improvement of salt tolerance in transgenic potato plants by glyceraldehyde-3 phosphate dehydrogenase gene transfer. Molecules and Cells. ( 2001 ) 12 : 185-189. Jones J, Wu K, Yang Y, Guerrero C, Nillegoda N, Pan ZQ, Huang L. A targeted proteomic analysis of the ubiquitin-like modifier nedd8 and associated proteins. Journal of proteome research. ( 2008 ) 7 : 1274-1287. Keough T, Youngquist RS, Lacey MP. Sulfonic acid derivatives for peptide sequencing by MALDI MS. Analaytical Chemistry. ( 2003 ) 75 : 156A-165A. Kim DW, Rakwal R, Agrawal GK, Jung YH, Shibato J, Jwa NS, Iwahashi Y, Iwahashi H, Kim DH, Shim IeS, Usui K. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis. ( 2005 ) 26 : 4521-4539. Kirkpatrick DS, Gerber SA, Gygi SP. The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods. ( 2005 ) 35 : 265-273. Kirkpatrick DS, Weldon SF, Tsaprailis G, Liebler DC, Gandolfi AJ. Proteomic identification of ubiquitinated proteins from human cells expressing His-tagged ubiquitin. Proteomics. ( 2005 ) 5 : 2104-2111. Knuesel M, Cheung HT, Hamady M, Barthel KK, Liu X. A method of mapping protein sumoylation sites by mass spectrometry using a modified small ubiquitin-like modifier 1 (SUMO-1) and a computational program. Molecular & Cellular Proteomics. ( 2005 ) 4 : 1626-1636. Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology. ( 2002 ) 130 : 2129-2141. Lee YH, Kim MS, Choie WS, Min HK, Lee SW. Highly informative proteome analysis by combining improved N-terminal sulfonation for de novo peptide sequencing and online capillary reverse-phase liquid chromatography/tandem mass spectrometry. Proteomics. ( 2004 ) 4 : 1684-1694. León IR, Neves-Ferreira AG, Valente RH, Mota EM, Lenzi HL, Perales J. Improved protein identification efficiency by mass spectrometry using N-terminal chemical derivatization of peptides from Angiostrongylus costaricensis, a nematode with unknown genome. Journal of Mass Spectrometry. ( 2007 ) 42 : 1363-1374. Leung J, Giraudat J. Abscisic acid signal transduction. Annual Review of Plant Physiology and Plant Molecular Biology. ( 1998 ) 49: 199-222. Liu D, Zhang X, Cheng Y, Takano T, Liu S. rHsp90 gene expression in response to several environmental stresses in rice (Oryza sativa L.). Plant Physiology and Biochemistry. ( 2006 ) 44 : 380-386. Madsen JA, Brodbelt JS. Simplifying fragmentation patterns of multiply charged peptides by N-terminal derivatization and electron transfer collision activated dissociation. Analaytical Chemistry. ( 2009 ) 81 : 3645-3653. Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics. ( 2005 ) 444 : 139-158. Mann K. The chicken egg white proteome. Proteomics .( 2007 ) 7 :3558-3568. Manzano C, Abraham Z, López-Torrejón G, Del Pozo JC. Identification of ubiquitinated proteins in Arabidopsis. Plant Molecular Biology. ( 2008 ) 68 : 145-158. Maor R, Jones A, Nühse TS, Studholme DJ, Peck SC, Shirasu K. Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Molecular & Cellular Proteomics. ( 2007 ) 6 : 601-610. Matsumoto M, Hatakeyama S, Oyamada K, Oda Y, Nishimura T, Nakayama KI. Large-scale analysis of the human ubiquitin-related proteome. Proteomics. ( 2005 ) 5 : 4145-4151. Miura K, Jin JB. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. The Plant Cell. ( 2007 ) 4:1403-1414. Molina H, Horn DM, Tang N, Mathivanan S, Pandey A. Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America. ( 2007 ) 104 : 2199-2204. Moons A, Valcke R, Van Montagu M. Low-oxygen stress and water deficit induce cytosolic pyruvate orthophosphate dikinase (PPDK) expression in roots of rice, a C3 plant. The Plant Journal. ( 1998 ) 15 : 89-98. Nandi D, Tahiliani P, Kumar A, Chandu D. The ubiquitin-proteasome system. Journal of Biosciences. ( 2006 ) 31 : 137-155. Nielsen ML, Vermeulen M, Bonaldi T, Cox J, Moroder L, Mann M. Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nature Methods. ( 2008 ) 5 : 459-460. Oehlers LP, Perez AN, Walter RB. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of 4-sulfophenyl isothiocyanate-derivatized peptides on AnchorChip sample supports using the sodium-tolerant matrix 2,4,6-trihydroxyacetophenone and diammonium citrate. Rapid Communication in Mass Spectrometry. ( 2005 ) 19 : 752-758. Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP. A proteomics approach to understanding protein ubiquitination. Nature Biotechnology. ( 2003 ) 21 : 921-926. Perales L, Peñarrubia L, Cornejo MJ. Induction of a polyubiquitin gene promoter by dehydration stresses in transformed rice cells. Journal of Plant Physiology. ( 2008 ) 165 : 159-171. Raab S, Drechsel G, Zarepour M, Hartung W, Koshiba T, Bittner F, Hoth S. Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis.The Plant Journal. ( 2009 ) 59 : 39-51. Rodriguez J, Gupta N, Smith RD, Pevzner PA. Does Trypsin Cut Before Proline? Journal of Proteome Research. ( 2008 ) 7 : 300-305. Saracco SA, Hansson M, Scalf M, Walker JM, Smith LM, Vierstra RD. Tandem affinity purification and mass spectrometric analysis of ubiquitylated proteins in Arabidopsis. The Plant Journal. ( 2009 ) 59 : 344-358. Schroeder JI, Kwak JM, Allen GJ. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature (2001) 410 : 327-330. Sullivan JA, Shirasu K. The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nature Reviews Genetics. ( 2003 ) 12:948–958. Syka JEP, Coon JJ. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. PNAS. ( 2004 ) 101:9528-9533. Tan F, Lu L, Cai Y, Wang J, Xie Y, Wang L, Gong Y, Xu BE, Wu J, Luo Y, Qiang B, Yuan J, Sun X, Peng X. Proteomic analysis of ubiquitinated proteins in normal hepatocyte cell line Chang liver cells. Proteomics. ( 2008 ) 8 : 2885-2896. Tomlinson E, Palaniyappan N, Tooth D, Layfield R. Methods for the purification of ubiquitinated proteins. Proteomics. ( 2007 ) 7 : 1016-1022. Ueda A, Yamamoto-Yamane Y, Takabe T. Salt stress enhances proline utilization in the apical region of barley roots. Biochemical and Biophysical Research Communications. ( 2007 ) 355 : 61-66. Vasilescu J, Smith JC, Ethier M, Figeys D. Proteomic analysis of ubiquitinated proteins from human MCF-7 breast cancer cells by immunoaffinity purification and mass spectrometry. Journal of Proteome Research. ( 2005 ) 4 : 2192-2200. Vasilescu J, Zweitzig DR, Denis NJ, Smith JC, Ethier M, Haines DS, Figeys D. The proteomic reactor facilitates the analysis of affinity-purified proteins by mass spectrometry: application for identifying ubiquitinated proteins in human cells. Journal of Proteome Research. ( 2007 ) 6 : 298-305. Wang D, Cotter RJ. Approach for determining protein ubiquitination sites by MALDI-TOF mass spectrometry. Analaytical Chemistry. ( 2005) 77:1458-1466. Wang D, Kalume D. Identification of protein ubiquitylation byelectrospray ionization tandem mass spectrometric analysis of sulfonated tryptic peptides. Analaytical Chemistry. ( 2006 ) 78:3681-3687. Warren MR, Parker CE, Mocanu V, Klapper D, Borchers C. Electrospray ionization tandem mass spectrometry of model peptides reveals diagnostic fragment ions for protein ubiquitination. Rapid Commun Mass Spectrom. ( 2005) 19 : 429-437. Welchman RL, Gordon C. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nature Reviews Molecular Cell Biology. ( 2005 ) 6:599–609. Xu P, Peng J. Characterization of polyubiquitin chain structure by middle-down mass spectrometry. Analaytical Chemistry. ( 2008 ) 80 : 3438-3444. Yang Y, Thannhauser TW, Li L, Zhang S. Development of an integrated approach for evaluation of 2-D gel image analysis: impact of multiple proteins in single spots on comparative proteomics in conventional 2-D gel/MALDI workflow. Electrophoresis. ( 2007 ) 28 : 2080-2094. Yan S, Tang Z, Su W, Sun W. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics. ( 2005 ) 5 : 235-244. Yokoi S, Bressan RA, Hasegawa PM. Salt stress tolerance of plants. JIRCAS Working Report. ( 2002 ) 25-33. Zdunek-Zastocka E, Omarov RT, Koshiba T, Lips HS. Activity and protein level of AO isoforms in pea plants (Pisum sativum L.) during vegetative development and in response to stress conditions. Journal of Experimential Botany. ( 2004 ) 55 :1361-1369. Zhang L, Tian LH, Zhao JF, Song Y, Zhang CJ, Guo Y. Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiology. ( 2009 ) 149 : 916-928. Zhang X, Rogowska-Wrzesinska A. On-target sample preparation of 4-sulfophenyl isothiocyanate-derivatized peptides using AnchorChip Targets. Journal of Mass Spectrometry. ( 2008 ) 43 : 346-359. Zhu JK. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology. ( 2003 ) 6 : 441-445. Zou J, Liu A, Chen X, Zhou X, Gao G, Wang W, Zhang X. Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. Journal of Plant Physiology. ( 2009 ) 166 : 851-61. Zubarev RA, Kelleher NL. Electron capture dissociation of multiply charged protein cations. A nonergodic process. Journal of the American Chemical Society. ( 1998 ) 12:3265-3266.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/22034-
dc.description.abstract目前全世界約有高於三分之一的人口以水稻作為主食,而水稻的生長與產量會受到鹽逆境的限制。由於全球土壤鹽化之問題日趨嚴重,因此如能藉由了解水稻於鹽逆境下之耐鹽反應,增進水稻之耐鹽特性,甚至增加水稻於鹽化土地上之產量將會是一個重要的課題。蛋白質的泛素 / 類泛素修飾在調節生物生理功能上扮演重要的角色,研究發現蛋白質不同之泛素 / 類泛素修飾位置、修飾型態與修飾數量,參與不同的生物生理機制。近年來有越來越多的證據顯示泛素 / 類泛素修飾蛋白在高等植物之生理機制中扮演關鍵角色,例如木質部發生、老化、細胞週期調控與逆境反應等。此外研究發現,在阿拉伯芥的RING finger E3 ligase (SALT- AND DROUGHT-INDUCED RING FINGER1, SDIR1) 參與離層酸之逆境訊息傳遞途徑,大量表現SDIR1會使離層酸所誘導之基因表現提高,例如提升萌芽時鹽的感受度、加強離層酸誘導氣孔關閉與增加乾旱的耐受性等。因此有效的鑑定出泛素 / 類泛素修飾之情況,將有助於研究泛素 / 類泛素修飾於植物生理調節所扮演的角色。本研究利用蛋白質體學與質譜技術,建立水稻泛素修飾蛋白質之分析平台。為研究泛素修飾蛋白質在鹽逆境反應中所扮演之角色,本實驗將栽培19天之水稻幼苗以250 mM的氯化鈉進行鹽逆境處理0.5、2、3與6小時。之後萃取根部蛋白質,再分別以膠體電泳與西方墨點轉漬法進行分析。從西方墨點轉漬法的結果發現,不同耐鹽特性之水稻根部其泛素修飾蛋白質表現有差異。本實驗以液相層析串聯質譜儀進行泛素修飾差異蛋白質分析,鑑定出蛋白質之身分,與泛素修飾蛋白質中泛素修飾之位置。從實驗結果推測這些泛素修飾蛋白質可能與水稻耐鹽特性有關,希望此研究成果能幫助了解泛素修飾參與水稻鹽逆境訊息傳遞相關蛋白之分子機制,提供日後耐鹽品種水稻育種之參考,進而提高鹽化土地水稻之栽培與產量。zh_TW
dc.description.abstractRice serves as a staple food source for more than one-third of the world's population. Rice growth and productivity is limited by salt stress. Because the global extent of soil salinity is increasing, it is important to understand the stress response of rice salt resistance for improving rice salt tolerance, especially for improving agricultural productivity in irrigated land. The ubiquitination / sumoylation of proteins play an important role in regulate function of physiology. Different types of ubiquitin (Ub) / SUMO conjugates are involved in the regulation of different cellular processes. In plants, ubiquitin is involved in a number of processes such as xylogenesis, senescence, cell cycle control and stress responses. In Arabidopsis thaliana, the RING finger E3 ligase, SALT- AND DROUGHT-INDUCED RING FINGER1 (SDIR1), is involved in abscisic acid (ABA)-related stress signal transduction. Over expression of SDIR1 leads to enhance ABA-induced stomatal closing, and enhanced drought tolerance. Therefore, efficient analysis of ubiquitin / ubiquitin-like proteins (Ubls) modifications will provide important information for their specific roles of cellular functions. In this work, we aim to develop analytical platform for Ub modifications in rice proteins analysis by using mass spectrometry (MS) combined with proteomic approaches. To investigate the role of ubiquitinaed proteins in the salt stress response, 19-days-old rice (Oryza sativa) seedlings were treated with 250 mM NaCl for 0.5, 2, 3, or 6 h. Total proteins of roots were extracted for comparative analysis compared with untreated controls using SDS-PAGE and western blot. In western blot, the results show that amount of ubiquitin-conjugated proteins were different between salt-tolerant and salt-sensitive rice seedling roots. These proteins were analyzed by LC-MS/MS, and the ubiquitination sites were also identified. These ubiquitin-conjugated proteins may be helpful in elucidating the molecular basis of salt tolerance in plant.en_US
dc.description.tableofcontents中文摘要……………………………………………………………………...………....i 英文摘要………………………………………………………………………………..ii 圖表目次………………………………………………………………………..……....v 第一章 緒論 第一節 文獻回顧………………………………………………….1 第二節 研究目的………………………………………………...11 第三節 實驗流程..……………………………………………….14 第二章 材料與方法 第一節 水稻幼苗鹽逆境處理…………………………………...15 第二節 水稻幼苗根部蛋白質萃取 ………………….….……...16 第三節 SDS-PAGE膠體電泳分析…………………...………....17 第四節 西方墨點轉漬法…………………….……......................17 第五節 銀染法…………………………………………………...18 第六節 酵素水解蛋白質樣品……………….…………………..19 第七節 質譜分析…………………………………………….…..19 第八節 資料庫比對………………………………….…………..20 第九節 質譜術鑑定泛素修飾蛋白質…………………………...21 第十節 胜肽衍生化…………………………...............................21 第三章 結果 第一節 水稻幼苗鹽逆境處理…………………………………...22 第二節 西方墨點轉漬法鑑定泛素修飾蛋白質………….……...23 第三節 膠體電泳分析泛素修飾蛋白質………...…….……...25 第四節 胜肽衍生化測試……………….…….……………...…..27 第四章 討論…………………………………………………………...…....………29 第五章 結論…………………………………………………………...…....………40 表……………………………………………………………………………………….42圖……………………………………………………………………………………….53 參考文獻……………………………………………………………………………….68 附圖………………………………………………………………………………..…...75zh_TW
dc.language.isoen_USzh_TW
dc.publisher分子生物學研究所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1708200917552200en_US
dc.subjectriceen_US
dc.subject水稻zh_TW
dc.subjectubiquitinen_US
dc.subjectsalt toleranceen_US
dc.subject泛素zh_TW
dc.subject耐鹽zh_TW
dc.title水稻根部於鹽逆境下泛素修飾蛋白質體分析zh_TW
dc.titleProteomic analysis of salt-responsive ubiquitin-related proteins in rice rooten_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
Appears in Collections:分子生物學研究所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.