Please use this identifier to cite or link to this item:
標題: 結合微機電可變電容的微波帶通濾波器
Microwave Bandpass Filter with MEMS Tunable Capacitors
作者: 劉邦旭
Liu, Bang-Shiu
關鍵字: bandpass filter;帶通濾波器;variable capacitor;turning ratio;insertion loss;可變電容;調變比;插入損失
出版社: 機械工程學系所
引用: [1] C. P. Wen, “Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Microwave Symposium Digest, G-MTT International, vol. 69, pp. 110-115 (1969). [2] J. H. Park, H. T. Kim, Y. Kwon, and Y. K. Kim, “Tunable millimeter-wave filters using a coplanar waveguide and micromachined variable capacitors,” Journal of Micromechanics and Microengineering, vol. 11, no. 6, pp. 706-712 (2001). [3] A. Abbaspour-Tamijani, L. Dussopt and G. M. Rebeiz, “Miniature and tunable filters using MEMS capacitors,” IEEE Microwave Theory and Techniques Transactions, vol. 51, pp. 1878-1885 (2003). [4] S Hontsu, S Mine, H Nishikawa, M Nakamori, A Fujimaki and T Kawai, “Preparation and design of a mechanically tunable superconducting lumped-element filter,” Institute of Physics Publishing Superconductor Science and Technology, vol. 17, pp.255-258 (2004). [5] M. K. Roy, C. Kalmar, R. R. Neurgaonkar, J. R. Oliver, and D. Dewing, “A highly tunable radio frequency filter using bulk ferroelectric materials,” IEEE Applications of Ferroelectrics Symposium, vol. 23, pp.25-28 (2004). [6] S. Hontsu, K. Agemura, H. Nishikawa, and M. Kusunoki, “Designing Coplanar Superconducting Lumped-Element Bandpass Filters Using a Mechanical Tuning Method,” The Institute of Electronics, Information and Communication Engineers, vol. E89–C, no, 2, pp. 151-154 (2006). [7] J. Papapolymerout, C. Lugo, Z. Zhao, X. Wang, and A. Hunt, “A Miniature Low-Loss Slow-Wave Tunable Ferroelectric BandPass Filter From 11- 14 GHz,” IEEE MTT-S International Microwave Symposium Digest, pp. 556-559 (2006). [8] S. U. Choi, M. S. Chung, and S. W. Yun, “Hairpin Tunable Bandpass Filter with Improved Selectivity and Tunability,” Asia-Pacific Microwave Conference Proceedings, APMC (2007). [9] C. Lugo, G. Wang, J. Papapolymerou, Z. Zhao, X. Wang, and A. T. Hunt, “Frequency and bandwidth agile millimeter-wave filter using ferroelectric capacitors and MEMS cantilevers,” IEEE Microwave Theory and Techniques Transactions, vol. 55, pp. 376-382 (2007). [10] S. Fouladi, W. D. Yan, and R. R. Mansour, “Microwave Tunable Bandpass Filter with MEMS Thermal Actuators,” Proceedings of the 3rd European Microwave Integrated Circuits Conference, pp. 482-485 (2008). [11] H. T. Su, P. M. Suherman, T. J. Jackson, F. Huang, and M. J. Lancaster, “Novel Tunable Bandpass Filter Realized Using Barium–Strontium–Titanate Thin Films,” IEEE Microwave Theory and Techniques Transactions, vol. 56, no. 11, pp. 2468-2473 (2008). [12] A. Genc, and R. Baktur, “A Tunable Bandpass Filter Based on Varactor load Split-Ring Resonators,” Microwave and Optical Technology Letters, vol. 51, no. 10, pp. 2394-2396 (2009). [13] T. Ohgihara, Y. Murakami, and T. Okamoto, “A 0.5 - 2.0 GHz Tunable Bandpass Filter Using YIG Film Grown by LPE,” IEEE Transactions on Magnetics, vol. 23, no. 5, pp. 3745-3747 (1987). [14] B. Pillans, A. Malczewski, R. Allison, and J. Brank, “6-15 GHz RF MEMS Tunable Filters,” IEEE MTT-S International Microwave Symposium Digest, vol. 2005, pp. 919-922 (2005). [15] J. L. Lopez, J. Verd, A. Uranga, J. Giner, G. Murillo, F. Torres, G. Abadal, and N. Barniol, “A CMOS–MEMS RF-Tunable Bandpass Filter Based on Two High-Q 22-MHz Polysilicon Clamped-Clamped Beam Resonators,” IEEE Electron Device Letters, vol. 30, no. 7, pp. 718-720 (2009). [16] A. Takacs, D. Neculoiul, D. Vasilache, A. Muller, P. Pons, H. Aubert, and R. Plana, “An Innovative and Versatile Topology for Tunable Bandpass Filter,” Proceedings of the International Semiconductor Conference, CAS, vol. 1, pp. 297-300 (2007). [17] R. Z. Mina, M. L. Hossein, K. Aditya, and A. Farrokh, “An Integrated 800-MHz Coupled-Resonator Tunable Bandpass Filter in Silver With a Constant Bandwidth,” Journal of Microelectromechanical Systems, vol. 18, no. 4, pp. 942-949 (2009). [18] A. Goni, J. del Pino, B. Gonzalez, and A. Hernandez, “An Analytical Model of Electric Substrate Losses for Planar Spiral Inductors on Silicon,” IEEE Transations on Electron Devices, vol. 54, no. 3, pp. 546-553 (2007). [19] C. P. Yue, and S. S. Wong, “Design Strategy of On-Chip Inductors for Highly Integrated RF Systems,” Proceedings - Design Automation Conference, pp. 982-987 (1999). [20] C. P. Yue, and S. S. Wong, “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC’s,” IEEE Journal of Solid-State Circuits, vol. 33, no. 5, pp. 743-752 (1998). [21] D. S. Greywall, and P. A. Busch, “Coupled micromechanical drumhead resonators with practical application as electromechanical bandpass filters,” Journal of Micromechanics and Microengineering, vol. 12, pp. 925-938 (2002). [22] C. Liu, Foundations of MEMS, Pearson Education, pp. 105-113 (2006) [23] 森榮二,濾波器的設計與製作,林肇彬譯,建興文化事業有限公司 (2005). [24] D. M. Pozar,微波工程,郭仁財譯,高立圖書有限公司 (2007). [25] 劉茂誠,磁偶合對堆疊IC的影響與應用,國立中興大學博士論文 (2009). [26] 林士傑,應用於射頻之微機械式可變電容,國立中興大學碩士論文 (2007). [27] 洪俊榆,低驅動電壓之可調變微帶通濾波器,國立中興大學碩士論文 (2007). [28] C. Ong, and M. Okoniewski, “MEMS-Switchable Coupled Resonator Microwave Bandpass Filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 7, pp. 1747-1755 (2008). [29] E. Pistono, P. Ferrari, L. Duvillaret, J. M. Duchamp, and R. G. Harrison, “Hybrid Narrow-Band Tunable Bandpass Filter Based on Varactor Loaded Electromagnetic-Bandgap Coplanar Waveguides,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 8, pp. 2506-2514 (2008). [30] W. D. Yan, and R. R. Mansour, “Tunable Dielectric Resonator Bandpass Filter With Embedded MEMS Tuning Elements,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 1, pp. 154-160 (2007).
本文利用TSMC標準0.35 μm 2P4M CMOS製程製作可調變的微帶通濾波器,以二階電容耦合型帶通原型電路轉換成可結合可變電容的等效電路。當可變電容依序增加電壓時,微帶通濾波器的中心頻率越往低頻移動,並且具有良好的再現性。模擬結果顯示可調變帶通濾波器驅動電壓5 V時調變量為35%,而濾波器的中心頻率可由10.85 GHz調變至7.53 GHz。在可變電容方面,是利用兩組不同形式的可變電容作電容調變,在最大驅動電壓5 V時,兩組可變電容分別可由0.47 pF變化至2.49 pF與0.22 pF變化至0.65 pF。在後製程方面,應用濕蝕刻技術掏空二氧化矽,釋放可變電容的懸浮結構,以完成製作結合可變電容的微帶通濾波器。
量測結果顯示可調變的微帶通濾波器在可變電容操作3 V的驅動電壓下,濾波器的中心頻率由10.43 GHz變化至8.53 GHz,而插入損失亦從-27.703 dB變化-30.941 dB,調變頻率比為22.3%。

This study investigates the fabrication of microwave tunable bandpass filters using the strandard TSMC 0.35 μm 2P4M (double polysilicon four metal) CMOS (complementary metal oxide metal semiconductor) process. The capacitive-coupled second-order prototype circuit is converted into the equivalent circuit which can combined with variable capacitor. When the driving voltage applies to the variable capacitors sequentially, the center frequency of the tunable bandpass filters moves to low-frequency, and the tunable bandpass filters have good reproducibility. The simulated results show that the tunable bandpass filters can achieve a tuning range of 35% with a bias of 5 V, and the center frequency of the micro bandpass filters is turned from 10.85 GHz to 7.53 GHz. The two different variable capacitors are turned from 0.47 pF to 2.49 pF and from 0.22 pF to 0.65 pF, respectively. The tunable bandpass filters require a post-process to etch the silicon dioxide, and to release the suspended structures in the variable capacitors.
The experimental results show that the tunable bandpass filters have a tuning range of 22% with a bias of 3V, the center frequency is turned from 10.43 GHz to 8.53 GHz, and the insertion loss changed from -27.703 dB to -30.941 dB.
其他識別: U0005-0502201013154600
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.