Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22053
DC FieldValueLanguage
dc.contributor高肇鴻zh_TW
dc.contributor林榮流zh_TW
dc.contributor.advisor許文輝zh_TW
dc.contributor.advisorWen-Hwei Hsuen_US
dc.contributor.author陳昶成zh_TW
dc.contributor.authorChen, Chang-Chenen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T07:17:05Z-
dc.date.available2014-06-06T07:17:05Z-
dc.identifierU0005-2008200917415700zh_TW
dc.identifier.citation1. 王志鵬。2000。。一、枯草桿菌Bacillus subtilis DB104電轉型效率之增進。二、設計、合成第一型抗凍蛋白基因及其在枯草桿菌、大腸桿菌之表現。碩士論文,食品暨應用生物科技學系,中興大學,台中市。 2. 王志鵬。2007。開發枯草桿菌持續型及誘導型表現系統以應用於自體、同源及異源蛋白質之表現暨建立芽孢桿菌益生菌表現系統。博士論文,食品暨應用生物科技學系,中興大學,台中市。 3. 王泓文。2003。腸炎弧菌幾丁質酶的基因工程,表現及其生化特性。碩士論文,生物科技研究所,台灣海洋大學,基隆市。 4. 林宜穎。2006。建立Rhizopus oryzae之轉型及基因表現系統。碩士論文,分子生物研究所,中興大學,台中市。 5. 洪碧霙。2003。蜡蚧輪枝菌幾丁聚醣酶之特性分析及應用研究。碩士論文,應用化學系,朝陽科技大學,台中縣。 6. 吳雅瑛。2007。綠竹筍殼幾丁三醣酶之純化與性質研究。碩士論文,食品營養學系,靜宜大學,台中縣。 7. 彭冠智。2007。利用地衣芽孢桿菌及枯草桿菌分泌及表層展是源自於枯草桿菌之幾丁質酶。碩士論文,食品暨應用生物科技學系,中興大學,台中市。 8. 張雅敏。2002。黑豆種子幾丁質之純化與性質研究。碩士論文,食品營養學系,靜宜大學,台中縣。 9. 管宜家。2003。Aspergillus oryzae leucine aminopeptidase基因的調控與表現。碩士論文,分子生物研究所,中興大學,台中市。 10. 劉冠伶。2004。豌豆種子(Pisum sativum L. Taichung No. 14)幾丁聚醣酶之研究。碩士論文,食品營養學系,靜宜大學,台中縣。 11. Abe, A., T. Sone, I. N. Sujaya, K. Saito, Y. Oda, K. Asano, and F. Tomita. 2003. rDNA ITS sequence of Rhizopus oryzae: its application to classification and identification of lactic acid producers. Biosci. Biotechnol. Biochem. 67:1725-1731. 12. Chang, K. B., J. Lee, , and W. R. Fu. 2002. HPLC analysis of N-acetyl-chito- oligosaccharides during the acid hydrolysis of chitin. J. Food Drug Anal. 8:275-283. 13. Cheng, C. Y., C. H. Chang, Y. J. Wu, and Y. K. Li. 2006. Exploration of glycosyl hydrolase family 75, a chitosanase from Aspergillus fumigatus. J. Biol. Chem. 281:3137-3144. 14. Chien, H. C., L. L. Lin, S. H. Chao, C. C. Chen, W. C. Wang, C. Y. Shaw, Y. C. Tsai, H. Y. Hu, and W. H. Hsu. 2002. Purification, characterization, and genetic analysis of a leucine aminopeptidase from Aspergillus sojae. Biochim. Biophys. Acta. 1576:119-126. 15. Choi, Y. J., E. J. Kim, Z. Piao, Y. C. Yun, and Y. C. Shin. 2004. Purification and characterization of chitosanase from Bacillus sp. strain KCTC 0377BP and its application for the production of chitosan oligosaccharides. Appl. Environ. Microbiol. 70:4522-4531. 16. Fukamizo, T., T. Ohkawa, Y. Ikeda, and S. Goto. (1994). Specificity of chitosanase from Bacillus pumilus. Biosci. Biotechnol. Biochem. 1205: 183-188. 17. Fukamizo, T., Y. Honda, S. Goto, I. Boucher, and R. Brzezinski. 1995. Reaction mechanism of chitosanase from Streptomyces sp. N174. Biochem. J. 311:377-383. 18. Harwood, C.R. and Cutting, S.M. 1990. Molecular Biological Methods for Bacllus. John Wiley & Sons Press, Chichester, UK. 19. Lee, Y. S., J. S. Yoo, S. Y. Chung, Y. C. Lee, Y. S. Cho, and Y. L. Choi. 2006. Cloning, purification, and characterization of chitosanase from Bacillus sp. DAU101. Appl. Microbiol. Biotechnol. 73: 113-121. 20. Li, S., L. Chen, C. Wang, and W. Xia. 2008. Expression, purification and characterization of endo-type chitosanase of Aspergillus sp. CJ22-326 from Escherichia coli. Carbohydr. Res. 343: 3001-3004. 21. Koji, Y., H. Hiroyuki, T. Masamichi, and Y. Keiji. 1991. Transformation of Rhizopus niveus using a bacterial blasticidin S resistance gene as a dominant selectable marker. Curr. Genet. 19:221-226. 22. Kubodera, T., N. Yamashita, and A. Nishimura. 2000. Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae: cloning, characterization and application as a dominant selectable marker for transformation. Biosci. Biotechnol. Biochem. 64:1416-1421. 23. Moriya, T., K. Murashima, A. Nakane, K. Yanai, N. Sumida, J. Koga, T. Murakami, and T. Kono. 2003. Molecular cloning of endo-beta-D-1,4-glucanase genes, rce1, rce2, and rce3, from Rhizopus oryzae. J. Bacteriol. 185:1749-1756. 24. Nogawa, M.,H. Takahashi, A. Kashiwagi, K. Ohshima, H. Okada, and Y. Morikawa (1998). Purification and characterization of exo–β–D–glucosaminidase from a cellulolytic fungus, Trichoderma reesei PC-3-7. Appl. Environ. Microbiol. 64: 890-895. 25. Oda, Y., K. Saito, H. Yamauchi, and M. Mori. 2002. Lactic acid fermentation of potato pulp by the fungus Rhizopus oryzae. Curr. Microbiol. 45:1-4. 26. Park, J.K., K. Shimono, N. Ochiai, K. Shigeru, M. Kurita, Y. Ohta, K. Tanaka, H. Matsuda, and M. Kawamukai. 1999. Purification, Characterization, and Gene Analysis of a Chitosanase (ChoA) from Matsuebacter chitosanotabidus 3001. J. Bacteriol. 181: 6642-6649. 27. Pelletier, A., and J. Sygusch. 1990. Purification and Characterization of Three Chitosanase Activities from Bacillus megaterium P1. Appl. Environ. Microbiol. 56:844-848. 28. Penttila, M., H. Nevalainen, M. Ratto, E. Salminen, and J. Knowles. 1987. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61:155-164. 29. Raafat, D., K. v. Bargen, A. Haas, and H. G. Sahl. 2008. Insights into the mode of action of chitosan as an antibacterial compound. Appl. Environ. Microbiol. 74 : 3764-3773. 30. Rivas, L. A., V. Parro, , M. Moreno-Paz, , and R. P. Mellado. 2000. The Bacillus subtilis 168 csn gene encodes a chitosanase with similar properties to a streptomyces enzyme. Microbiol. 146: 2929-2936. 31. Sakai, K., M. Narihara, Y. Kasama, M. Wakayama, and M. Moriguchi. 1994. Purification and characterization of thermostable β-N-acetylhexosaminidase of Bacillus stearothermophilus CH-4 isolated from chitin-containing compost. Appl. Environ. Microbiol. 60: 911-915. 32. Saito, J., A. Kita, Y. Higuchi, Y. Nagata, A. Ando , and K. Miki. 1999. Crystal structure of chitosanase from Bacillus circulans MH-K1 at 1.6-Å resolution and its substrate recognition mechanism. J. Biol. Chem. 274: 30818-30825 33. Seki, K., H. Kuriyama, and Y. Hashimoto. 2000. Efficient extracellular production of recombinant chitosanase from Bacillus amyloliquefaciens UTK using the expression/secretion system of Bacillus brevis. Bull. Fac. Agr. Saga. Univ. 85: 117-122. 34. Shimosaka, M., M. Nogawa,X. Wang, M. Kumehara, and M. Okazaki. 1995. Production of two chitosanases from a chitosan-assimilating bacterium, Acinetobacter sp. strain CHB101. Appl. Environ. Microbiol. 61:438-442. 35. Shimono, K., H. Matsuda, and M. Kawamukai. 2002. Functional expression of chitinase and chitosanase, and their effects on morphologies in the yeast Schizosaccharomyces pombe. Biosci. Biotechnol. Biochem. 66:1143-1147. 36. Shimono, K., K. Shigeru, A. Tsuchiya, N. Itou, Y. Ohta, K. Tanaka, T. Nakagawa, H. Matsuda, and M. Kawamukai. 2002. Two glutamic acids in chitosanase A from Matsuebacter chitosanotabidus 3001 are the catalytically important residues. J. Bacteriol. 131:187-196. 37. Sun, Y., W. Liu, B. Han, J. Zhang, and B. Liu. 2006. Purification and characterization of two types of chitosanase from a Microbacterium sp. Biotechnol. Lett. 28:1393-1399. 38. S.k. Misro, M. R. Kumar, R. Banerjee, and B.C. Bhattacharyya. 1997. Production of gallic acid by immobilization of Rhizopus oryzae. Bioproce. Engineer. 16:257-260. 39. Skory, C. D. 2002. Homologous recombination and double-strand break repair in the transformation of Rhizopus oryzae. Mol. Genet. Genom. 268:397-406. 40. Skory, C. D. 2003. Induction of Rhizopus oryzae pyruvate decarboxylase genes. Curr. Microbiol. 47:59-64. 41. Skory, C. D. 2004. Repair of plasmid DNA used for transformation of Rhizopus oryzae by gene conversion. Curr. Genet. 45:302-310. 42. Takaya, N., K. Yanai, H. Horiuchi, A. Ohta, and M. Takagi. 1994. Cloning and characterization of two 3-phosphoglycerate kinase genes of Rhizopus niveus and heterologous gene expression using their promoters. Curr. Genet. 25:524-530. 43. Tanabe, T., K. Morinaga, T. Fukamizo, and M. Mitsutomi. 2003. Novel chitosanase from Streptomyces griseus HUT 6037 with transglycosylation activity. Biosci. Biotechnol. Biochem. 67: 354-364. 44. Wada, M., T. Beppu, and S. Horinouchi. 1996. Integrative transformation of the zygomycete Rhizomucor pusillus by homologous recombination. Appl. Microbiol. Biotechnol. 45:652-657. 45.Yamada, T., S. Hiramatsu, P. Songsri, and M. Fujie. 1997. Alternative expression of a chitosanase gene produces two different proteins in cells infected with Chlorella virus CVK2. Virology. 230: 361-368. 46. Yatsunami, R., Y. Sakihama, M. Suzuki, T. Fukazawa, S. Shimizu, T. Sunami, K. Endo, A. Takenaka, and S. Nakamura. 2002. A novel chitosanase from Bacillus sp. strain K17: gene cloning and expression in Escherichia coli. Nucleic Acids Res. Suppl. 2: 227-228. 47. Yun, C., D. Amakata, Y. Matsuo, H. Matsuda, and M. Kawamukai. 2005. New chitosan-degrading strains that produce chitosanases similar to ChoA of Mitsuaria chitosanitabida. Appl. Environ. Microbiol. 9:5138-5144. 48. Yoon, H. G., H. Y. Kim, Y. H. Lim, H. K. Kim, D. H. Shin, B. S. Hong, and H. Y. Cho. 2000. Thermostable chitosanase from Bacillus sp. strain CK4: cloning and expression of the gene and characterization of the enzyme. Appl. Environ. Microbiol. 66: 3727-3734. 49. Yoon, H. G., K. H. Lee, H. Y. Kim, H. K. Kim, D. H. Shin, B. S. Hong, and H. Y. Cho. 2002. Gene cloning and biochemical analysis of thermostable chitosanase (TCH-2) from Bacillus coagulans CK108. Biosci. Biotechnol. Biochem. 66:986-995. 50. Zhang, J., and Y. Sun 2007. Molecular cloning, expression and characterization of a chitosanase from Microbacterium sp. Biotechnol. Lett. 29: 1221-1225 51. Zhu, X. F., Y. Zhou, and J. L. Feng. 2007. Analysis of both chitinase and chitosanase produced by Sphingomonas sp. CJ-5. J. Zhejiang Univ. Sci. B 8:831-838. 52. Zhou, W., H. Yuan, J. Wang, and J. Yao. 2008. Production, purification and characterization of chitosanase produced by Gongronella sp. JG. Lett. Appl. Microbiol. 46:49-54.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/22053-
dc.description.abstractChitosan oligosaccharides of hexamer to decamer in chain length perform more potent antimicrobial, antitumor, and immunopotentiating activities, than shorter oligosaccharides. Chitosan digested with an endo-type chitosanase have the opportunity to obtain hexamer to decamer oligosaccharides. In this study chitosanase gene from Bacillus sp. NCHU-05 was cloned to expression vectors, and expressed in Escherichia coli NovaBlue or Bacllus subtilis WB800. Expressed recombinant chitosanases were purified by Ni-column chromatography. The molecular mass of the chitosanase was estimated to be 32 kDa by means of sodium dodecyl sulfate -polyacrylamide gel electrophoresis. Purified chitosanase established the optima temperature and pH value were with 40 ℃ and pH 5.6, respectively. The specific activities of recombinant chitosanases were 5231 U/mg from E. coli NovaBlue and 5823 U/mg from B. subtilis WB800. Production of chitosanases from E. coli NovaBlue were 150 mg/l, and from B. subtilis WB800 wre 100 mg/l. Purified chitosanase could be used in the preparation of R. oyzae protoplasts for gene transformation with transformation efficiency of 0.45 transformant/μg DNA.en_US
dc.description.abstractChitosan的水解產物往往具有生物活性。一般而言,分子量為hexamer ~ decamer的chitosan oligosaccharide,其抗菌、抗癌及調節免疫機能的能力高於分子量較小的oligochitosan。利用endo形式的 chitosanase進行水解,有機會獲得hexamer到decamer的oligosaccharide。本研究將Bacillus sp.NCHU-5的chitosanase基因分別選殖入表現載體並以Escherichia coli NovaBlue和Bacllus subtilis WB800為宿主進行chitosanase基因之表現。表現生產的重組的chitosanase,可利用 Ni-column純化。純化的chitosanase經sodium dodecyl sulfate -polyacrylamide gel electrophoresis電泳圖分析為32kDa。純化的chitosanase其最適反應溫度為40 ℃與最適反應pH為5.6。由重組E. coli NovaBlue純化的chitosanase比活性為5231 U/mg,而重組Bacllus subtilis WB800 純化的chitosanse活性為5823 U/mg。E. coli NovaBlue生產的chitosanase,每升產量為150 mg。B. subtilis WB800所生產的chitosnase,每升產量為100 mg 。純化的chitosanase也成功地利用在Rhizopus oryzae原生質體的製備與轉型,其轉型效率為0.45 transformant/μg DNA。zh_TW
dc.description.tableofcontents目錄------------------------------------------------------------------------------------------------i 表目錄--------------------------------------------------------------------------------------------ii 圖目錄--------------------------------------------------------------------------------------------iii 縮寫表--------------------------------------------------------------------------------------------iv 中文摘要------------------------------------------------------------------------------------------v Abstract-------------------------------------------------------------------------------------------vi 前言-------------------------------------------------------------------------------------------------1 一、Chitin、chitosan以及chitosanase的介紹---------------------------------------1 (一)Chitin與Chitosan---------------------------------------------------------------1 (二)Chitosanase-----------------------------------------------------------------------2 二、B. subtilis-------------------------------------------------------------------------------2 三、R. oryzae--------------------------------------------------------------------------------3 四、研究目的與策略----------------------------------------------------------------------4 材料與方法----------------------------------------------------------------------------------------6 一、藥品-------------------------------------------------------------------------------------6 二、菌株與質體----------------------------------------------------------------------------6 三、 Chitosanase基因的選殖------------------------------------------------------------6 四、 染色體DNA之抽取-----------------------------------------------------------------6 (一)Bacillus染色體DNA之抽取-------------------------------------------------6 (二)R. oryzae總DNA的抽取------------------------------------------------------7 五、轉型方法-------------------------------------------------------------------------------7 (一)Bacillus的原生質體轉型法---------------------------------------------------8 (二)Bacillus的電轉型法------------------------------------------------------------8 (三)R. oryzae pyrG-之轉形----------------------------------------------------------9 六、轉型株的確認-------------------------------------------------------------------------9 (一)B. subtilis 轉型株的確認------------------------------------------------------9 (二)R. oryzae pyrG-轉形株的確認-----------------------------------------------10 七、R. oryzae-E. coli穿梭載體之構築------------------------------------------------10 (一)Free form載體-----------------------------------------------------------------10 (二)Integrating form載體---------------------------------------------------------10 八、蛋白質之定量與電泳分析---------------------------------------------------------10 (一)蛋白質之定量------------------------------------------------------------------11 (二)蛋白質的電泳分析------------------------------------------------------------11 九、酵素活性分析------------------------------------------------------------------------12 (一)Chitosanase活性的分析------------------------------------------------------12 1. DNS法------------------------------------------------------------------------12 2. Rondle-Morgan法-----------------------------------------------------------12 (二) LAP活性之分析--------------------------------------------------------------13 十、Chitosanase生化特性分析---------------------------------------------------------13 (一)Chitosanase最適反應溫度---------------------------------------------------13 (二)Chitosanase最適反應pH----------------------------------------------------13 (三)Chitosanase熱穩定性---------------------------------------------------------13 (四)Chitosan的水解產物分析----------------------------------------------------14 十一、轉形株之LAP活性分析------------------------------------------------------14 結果------------------------------------------------------------------------------------------------15 一、chitosanase活性的分析------------------------------------------------------------15 二、利用E. coli (pQEcsn)生產chitosanase ------------------------------------------15 三、利用從B. subtilis WB800 (pRPbs)生產chitosanase ---------------------------16 四、Chitosanase酵素生化特性--------------------------------------------------------16 五、Chitosan經chitosanase水解之產物----------------------------------------------16 六、R. oryzae的轉型--------------------------------------------------------------------------16 (一)原生質體的形成---------------------------------------------------------------------16 (二)Top agar對於R. oryzae的轉型效率的影響------------------------------------17 (三)載體濃度對於R. oryzae轉型效率的影響--------------------------------------17 (四)Chitosanase活性對於R. oryzae原生質體形成的影響-----------------------17 (五)PEG 4000作用時間對於R. oryzae原生質體的影響-------------------------18 (六)轉型株LAP活性分析--------------------------------------------------------------18 討論-----------------------------------------------------------------------------------------------19 表一、chitosanase在glycoside hydrolases family中的分類---------------------------21 表二、利用原菌生產chitosanase------------------------------------------------------------23 表三、利用外源基因表現方式生產的chitosanse----------------------------------------24 表四、本實驗所使用的菌種及質體--------------------------------------------------------25 表五、本實驗所使用的引子------------------------------------------------------------------27 表六、利用不同偵測方法所偵測到的chitosanase活性--------------------------------28 表七、利用DNS方法偵測不同來源的chitosanase之酵素活性----------------------29 表八、不同的誘導條件對於E. coli NovaBlue (pQEcsn)的chitosanase活性影響-30 表九、由IPTG所誘導的E. coli NovaBlue (pQEcsn)培養液純化的chitosanase---31 表十、由B. subtilis WB800 ( pRPbs )培養液純化chitosanase--------------------------32 表十一、Top agar對於R. oryzae ATCC200756的轉型效率的影響------------------33 表十二、載體濃度對於R. oryzae ATCC200756轉型效率的影響--------------------34 表十三、PEG作用時間對於R. oryzae ATCC200756轉型效率的影響---------------35 圖一、(A)chitin和(B)chitosan之結構圖---------------------------------------------------36 圖二、pQEcsn質體的構築-------------------------------------------------------------------37 圖三、pQEbs質體的構築---------------------------------------------------------------------38 圖四、pRPbs質體的構築---------------------------------------------------------------------39 圖五、pSKG-lap質體的構築-----------------------------------------------------------------40 圖六、pSKGr-lapk質體的構築--------------------------------------------------------------41 圖七、利用SDS-PAGE分析純化自 E. coli NovaBlue (pQE-csn)的chitosanase---44 圖八、利用SDS-PAGE分析純化的chitosanase來自於B. subtilis WB800 (pRPbs) ------------------------------------------------------------------------------------------------------45 圖九、溫度對於chitosanase活性的影響--------------------------------------------------46 圖十、熱穩定性對於 chitosanase活性的影響--------------------------------------------47 圖十一、利用薄層分析法分析chtiosanas水解chitosan之水解產物----------------48 圖十二、R. oryzae原生質體的形成--------------------------------------------------------49 圖十三、Chitosanase活性對於R. oryzae原生質體形成的影響----------------------50 圖十四、PEG4000作用時間對於R. oryzae原生質體的影響-------------------------51 圖十五、R. oryzae ATCC200756 ( pSKG-lap )轉形株之lap基因的表現能力------52 參考文獻-----------------------------------------------------------------------------------------53zh_TW
dc.language.isoen_USzh_TW
dc.publisher分子生物學研究所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008200917415700en_US
dc.subjectchitosanen_US
dc.subject幾丁聚醣酶Rhizopous oryzaezh_TW
dc.subjectchitosanaseen_US
dc.subjectRhizopous oryzaeen_US
dc.title利用Escherichia coli 和 Bacillus subtilis作為宿主來表現Bacillus sp. NCHU-5的幾丁聚醣酵素基因以及幾丁聚醣酵素在Rhizopus oryzae轉型上的應用zh_TW
dc.titleExpression of Bacillus sp. NCHU-5 chitosanase gene in Escherichia coli and Bacillus subtilis and the application of chitosanase in the transformation of Rhizopus oryzaeen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
item.grantfulltextnone-
item.fulltextno fulltext-
item.cerifentitytypePublications-
Appears in Collections:分子生物學研究所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.