Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/22072
標題: 利用植物生產降血脂活性胜肽 VVYP 之研究 : 以攜有 VVYP 之大豆改造蛋白基因 Gy5 之轉殖分析
Production of bioactive peptides VVYP in transgenic plants : Using soybean glycinin Gy5 gene as VVYP carrier
作者: Lai, Yen-Hsun
賴彥勳
關鍵字: transgenic soybean;轉殖水稻;transgenic rice;bioactive peptide VVYP;活性胜肽VVYP
出版社: 分子生物學研究所
引用: 劉麗飛。 (1998)。 水稻與甘藷組織培養,phytase 基因轉殖及性狀分析。行政院國家科學委員會專題研究計畫成果報告。 劉程煒、尤進欽。 (2010)。 植物生物反應器之應用潛力-以基因轉殖萵苣為例。P.28-34。農業生技產業季刊。 林家夙。 (2009)。 利用轉殖植物生產 VVYP 活性胜肽及特殊胺基酸組成RMGK 之研究。 中興大學分子生物學研究所碩士論文。 郭長虹、曹勁松。 (2005)。 口服乳鐵蛋白生理功效、保健機理及應用於食品的最新進展。 P.86-90。食品科技 2005 卷 11 期。 洪梅珠、盧虎生、簡珮如。 (2003)。 米飯質地特性與白米鹼溶性及醇溶性蛋白質相關之研究。 台中區農業改良場研究彙報。 80: 41-49。 江志明。 (2004)。 建立基因轉殖水稻種子生產具雙功能的澱粉普魯南糖酶與beat-澱粉水解酶以加速麥芽糖與高蛋白質產物的製程。 國防醫學院生命科學研究所博士論文。 鄭麗珠。 (2007)。 利用轉基因植物生產活性胜肽及醫藥工業用酵素之研究。中興大學分子生物學研究所碩士論文。 張展維。 (2000)。 高血脂症臨床處理型態之回溯性研究。 台灣大學藥學研究所碩士論文。 陳瑞斌。 (2001)。 豬乳鐵蛋白基因在轉殖水稻表現的研究。 中興大學分子生物學研究所碩士論文。 曾清山、賴明信、顏信沐、陳治官。 (2005)。 轉殖水稻的環境風險分析。 P.57-64。基因轉殖植物生物安全評估與檢測專刊。 行政院農業委員會農業試驗所特刊第 120 號。 王月華、孫鵬凱、余淑美。 (2005)。 植物基因轉殖技術之研發及展望。 P.17。植物基因轉殖之原理與應用。 植物生物技術教學資源中心主編 2005 年 5月再版。 Adachi M, Takenaka Y, Gidamis AB, Mikami B, Utsumi S. (2001). Crystal structure of soybean proglycinin A1aB1b homotrimer. J Mol Biol. 305: 291-305. Adachi M, Kanamori J, Masuda T, Yagasaki K, Kitamura K, Mikami B, Utsumi S. (2003). Crystal structure of soybean 11S globulin: glycinin A3B4 homohexamer. PNAS. 100, 12: 7395-7400. Adams MR, Golden DL, Franke AA, Potter SM, Smith HS, Anthony MS. (2004). Dietary Soy β-Conglycinin (7S Globulin) Inhibits Atherosclerosis in Mice. J. Nutr. 134: 511–516. Adlerova L, Bartoskova A, Faldyna M. (2008). Lactoferrin: a review. Vet Med-Czech. 53, 9: 457–468. Arai S, Osawa T, Ohigashi H, Yoshikawa M, Kaminogawa S, Watanabe M, Ogawa T, Okubo K, Watanabe S, Nishino H, Shinohara K, Esashi T, Hirahara T. (2001). A mainstay of functional food science in Japan—history, present status, and future outlook. Biosci Biotechnol Biochem. 65: 1-13. Bartel DP. (2009). MicroRNAs: target recognition and regulatory functions. Cell. 136, 2: 215–33. Beilinson V, Chen Z, Shoemaker C, Fischer L, Goldberg B, Nielsen C. (2002). Genomic organization of glycinin genes in soybean. Theor Appl Genet. 104: 1132–1140. Booth J, Nykiforuk C, Shen Y, Zaplachinsk S, Szarka S, Kuhlman P, Murray E, Morck D, Moloney MM. (2010). Seed-based expression systems for plant molecular farming. Plant Biotechnol J. 8: 588-606. Brock J. (1995). Lactoferrin: a multifunctional immunoregulatory protein?. Immunol Today. 16: 417-9. Christou P, McCabe DE, Swain WF. (1988). Stable Transformation of Soybean Callus by DNA-Coated Gold Particles. Plant Physiol. 87: 671-674. Droste A, Pasquali G, Bodanese-Zanettini MH. (2000). Integrated Bombardment and Agrobacterium Transformation System: an Alternative Method for Soybean Transformation. Plant Mol. Biol. Rep. 18: 51-59. Godwin l, Todd G, Ford-Loyd B, Newbury HJ. (1991). The effects of acetosyringone and pH on Agrobacterium-medJated transformation vary according to plant species. Plant Cell Rep. 9: 671-675. Hartmann R and Meisel H. (2007). Food-derived peptides with biological activity: from research to food applications. Curr. Opin. Chem. Biol. 8: 163-169. Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, RHorsch RB. (1988). Production of Transgenic Soybean Plants Using Agrobacterium-Mediated DNA Transfer. Nat Biotechnol. 6: 915–922. Hoogwerf BJ and Huang JC. (2009). Lipid-lowering strategies and coronary heart disease risk reduction. http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/cardiology/heart-disease-risk-reduction/#cesec3 Ishihama Y, Oda Y, Tabata T, Sato T, Nagasui T, Rappsilber J, Mann M. (2005). Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein. Mol Cell Proteomics. 4, 9: 1265-72. James C. (2009). Global Status of Commercialized Biotech/GM Crops: 2009. ISAAA Brief 41. Kagawa K, Matsutaka H, Fukuhama C, Watanabe Y, Fujino H. (1996). Globin digest, acidic protease hydrolysate, inhibit dietary hypertriglyceridemia and Val-Val-Tyr-Pro, one of its constituents,possesses most superior effect. Life Sci. 58, 20: 1745-1755. Kagawa K, Matsutaka H, Fukuhama C, Fujino H, Okuda H. (1998). Suppressive Effect of Globin Digest on Postprandial Hyperlipidemia in Male Volunteers. J. Nutr. 128: 56-60. Khalafalla MM, Rahman SM, EI-Shemy HA, Nakamoto Y, Wakasa K, Ishimoto M. (2005). Optimization of Particle Bombardment Conditions by Monitoring of Tranisent sGFP(S65T) Expression in Transformed Soybean. Breeding Sci. 55: 257-263. Korhonen H and Pihlanto A. (2006). Bioactive Peptides: Production and Functionality. Int. Dairy J. 16: 945-960. Koshiyama L. (1983). Storage proteins of soybean. Seed proteins. Biochemistry, genetics, nutritive value. 427-450. Krishan HB, Kim WS, Jang S, Kerley MS. (2009). All Three Subunits of Soybean β-Conglycinin Are Potential Food Allergens. J. Agric. Food Chem. 57: 938-943. Lau SO and Sun SSM. (2009). Plant seeds as bioreactors for recombinant protein production. Biotechnol Adv. 27: 1015-1022. Lee TT, Chang CC, Juang RS, Chen RB, Yang HA, Chu LE, Wang SR, Tseng TH, Wang CS, Cheng LJ, Yu B. (2010). Porcine Lactoferrin Expression in Transgenic Rice and Its Effects as a Feed Additive on Early Weaned Piglets. J. Agric. Food Chem. 58: 5166-5173. Liu CF and Pan TM. (2010). Recombinant expression of bioactive peptide lunasin in Escherichia coli. Appl Microbiol Biotechnol. 88: 177-186. Liu J, Su Q, An L, Yang A. (2009). Transfer of a minimal linear marker-free and vector-free smGFP cassette into soybean via ovary-drip transformation. Biotechnol Lett. 31: 295–303. Ma JK, Chikwamba R, Sparrow P, Fischer R, Mahoney R, Twyman RM. (2005). Plant-derived pharmaceuticals--the road forward. Trends Plant Sci. 10, 12: 580-585. McBride JL, Boudreau RL, Harper SQ, Staber PD, Monteys AM, Martins I, Gilmore BL, Burstein H, Peluso RW, Polisky B, Carter BJ, Davidson BL. (2008). Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: Implications for the therapeutic development of RNAi. PNAS. 105, 15: 5868-5873. McCabe DE, Swain WF, Martinell BJ, Christou P. (1988). Stable Transformation of Soybean (Glycine Max) by Particle Acceleration. Nat Biotechnol. 6: 923-926. Meurer CA, Dinkins RD, Collins GB. (1998). Factors affecting soybean cotyledonary node transformation. Plant cell Rep. 18: 180-186. Miwa M. (2000). Development of functional foods based on physiological activity of amino acids. Biofactors. 12: 161-165. Moore SA, Anderson BF, Groom CR, Haridas M, Baker EN. (1997). Three-dimensional Structure of Diferric Bovine Lactoferrin at 2.8 Ǻ Resolution. J. Mol. Biol. 274: 222-236. Motoyama T, Maruyama N, Amari Y, Kobayashi K, Washida H, Higasa T, Takaiwa F, Utsumi S. (2009). α'' Subunit of soybean β-conglycinin forms complex with rice glutelin via a disulphide bond in transgenic rice seeds. J Exp Bot. 60, 14: 4015–4027. Motoyama T, Okumoto Y, Tanisaka T, Utsumi S, Maruyama N. (2010). Co-expression of α'' and b subunits of β-conglycinin rice seeds and its effect on the accumulation behavior of the expressed proteins. Transgenic Res. 19: 819-827. Nishizawa K, Kita A, Doi C, Yamada Y, Ohinata K, Yoshikawa M, Ishimoto M. (2008). Accumulation of the Bioactive Peptides, Novokinin, LPYPR and Rubiscolin in Seeds of Genetically Modified Soybean. Biosci. Biotechnol. Biochem. 72, 12: 3301-3305. Niu QW, Lin SS, Reyes JL, Cheng KC, Wu HW, Yeh SD, Chua NH. (2006). Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol. 24, 11: 1420-1428. Philip R, Darnowski DW, Maughan PJ, Vodkin LO. (2001). Processing and localization of bovine beta-casein expressed in transgenic soybean seeds under control of a soybean lectin expression cassette. Plant Sci. 161: 323-335. Prak K, Nakatani K, Katsube-Tanaka T, Adachi M, Maruyama N, Utsumi S. (2005). Structure-function relationships of soybean proglycinins at subunit levels. J. Agric. Food Chem. 53: 3650-3657. Prak K, Maruyama Y, Maruyama N, Utsumi S. (2006). Design of genetically modified soybean proglycinin A1aB1b with multiple copies of bioactive peptide sequences. Peptides. 27: 1179–1186. Prak K and Utsumi S. (2009). Production of a Bioactive Peptide (IIAEK) in Escherichia coli Using Soybean Proglycinin A1aB1b as a Carrier. J. Agric. Food Chem. 57: 3792-3799. Rao R, Breuer M, Tortiglione C, Malva C, Baggerman C, Corrado G, Loof AD, Pennacchio F. (2004). Transgenic expression in tobacco of a poly-proctolin construct leading to production of the bioactive peptide. Biotechnol. Lett. 26: 1413-1420. Salmon V, Legrand D, Slominanny M.C, Yazidi I, Spik G, Gruber V, Bournat P, Olagnier B, Mison D, Theisen M, Merot B. (1998). Production of human lactoferrin in transgenic tobacco plants. Protein Expr Purif. 13: 127-35. Song DG, Chen XY, Zhang HS, Li J, Zhang XF, Wang HZ. (2008). Expression of Human Lactoferrin in transgenic Potato Tubers. J. Trop. Subtrop. Bot. 16, 5: 430-434. Stewart CN Jr, Adang MJ, All JN, Boerma HR, Cardineau G, Tucker D, Parrott WA. (1996). Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol. 112, 1: 121-129. Subramanian S, Graham Y, Yu O, Graham L. (2005). RNA Interference of Soybean Isoflavone Synthase Genes Leads to Silencing in Tissues Distal to the Transformation Site and to Enhanced Susceptibility to Phytophthora sojae. Plant Physiol. 137: 1345–1353. Takahashi M, Uematsu Y, Kashiwaba K, Yagasaki K, Hajika M, Matsunaga R, Komatsu K, Ishimoto M. (2003). Accumulation of high levels of free amino acids in soybean seeds through integration of mutations conferring seed protein deficiency. Planta. 217: 577-586. Takaiwa F, Sakuta C, Choi SK, Tada Y, Motoyama T, Utsumi S. (2008). Co-Expression of Soybean Glycinins A1aB1b and A3B4 Enhances Their Accumulation Levels in Transgenic Rice Seed. Plant Cell Physiol. 49, 10: 1589-1599. Tsubokura Y, Hajika M, Harada K. (2006). Molecular characterization of a β-conglycinin deficient soybean. Euphytica. 150: 249–255. Wakasa Y, Yasuda H, Takaiwa F. (2006). High accumulation of bioactive peptide in transgenic rice seeds by expression of introduced multiple genes. Plant Biotechnol J. 4: 499-510. Wang G and Xu Y. (2008). Hypocotyl-based Agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference. Plant Cell Rep. 27: 1177-1184. Warthmann N, Chen H, Ossowski S, Weigel D, Herve P. (2008). Highly Specific Gene Silencing by Artificial miRNAs in Rice. PLoS ONE. 3, 3: e1829. Yamada Y, Nishizawa K, Yokoo M, Zhao H, Onishi K, Teraishi M, Utsumi S, Ishimoto M, Yoshikawa M. (2008). Anti-hypertensive activity of genetically modified soybean seeds accumulating novokinin. Peptides. 29: 331-337. Ye X, Al-Babili S, KlÖti A, Zhang J, Lucca P, Beyer P, Potrykus I. (2000). Engineering the Provitamin A (β-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm. Sci. 287: 303-305. Yukawa K, Kaku H, Tanaka H, Koga-Ban Y, Fukuda M. (2008). Enhanced Soybean Infection by the Legume ‘‘Super-Virulent’’ Agrobacterium tumefaciens Strain KAT23. Biosci. Biotechnol. Biochem. 72, 7: 1809-1816. Zeitlin L, Olmsted SS, Moench TR, Co MS, Martinell BJ, Paradker VM, Russell DR, Queen C, Cone RA, Whaley KJ. (1998). A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat Biotechnol. 16: 1361-1364. Zeng Y, Wanger EJ, Cullen BR. (2002). Both Natural and Designed Micro RNAs Can Inhibit the Expression of Cognate mRNAs When Expressed in Human Cells. Mol. Cell. 9: 1327-1333.
摘要: 
Bioactive peptide Val-Val-Tyr-Pro (VVYP) plays an important role in reducing blood cholesterol by inhibiting the absorption of triglycerides in intestinal tract and enhancing the activity of hepatic triglyceride lipase to remove extra triglycerides. In order to produce large amount of VVYP in transgenic plants, constructs containing 10 copies of VVYP engineered in a soybean storage protein Gy5 gene (Gy5-10VVYP) driven by various promoters, such as the rice glutelin promoter, soybean seed-specific β-conglycinin α-subunit promoter (BCAP) and CaMV35S promoter were created. These constructs were used to transform rice and soybean through particle bombardment or agrobacterium-mediated transformation methods. In addition, an artificial miRNA construct (amiRNA159-Gy5) that could potentially be used to suppress the expression of endogenous Gy5 storage protein and to increase the levels of Gy5-10VVYP recombinant proteins in transgenic soybeans was also constructed. However, transgenic soybean has not yet been obtained. Further characterization of soybean transformation system was evaluated including the regeneration ability of hypocotyl explants, sensitivity to various concentrations of phosphinothricin (PPT) and various co-culture conditions of agrobacterium with explants which were used to set up an optimized soybean transformation conditions for Chin-Ren-Woo-Dow (CRWD), a local soybean variety. For rice transformation, 28 GluGy5VP10 transgenic rice lines were obtained and their transgenes were identified by PCR and Southern blot assays. Results showed these transgenic rice plants contain either one or two copies of Gy5VP10 insertions. Western blot analysis using anti-Gy5 or anti-His tag antibodies against total seed proteins recognized four protein bands with apparent molecular weight of 60, 50, 40, and 20 kDa respectively. Further LC-MS/MS analysis confirmed that 60, 50, and 20 kDa proteins contain peptides of VVYP and Gy5 protein. These results demonstrated that the Gy5VP10 recombinant proteins were successfully expressed in the transgenic rice. Further analysis to demonstrate the release of VVYP from recombinant proteins and their function in reducing blood cholesterol in experimental animals are necessary to validate the usefulness of this approach.

活性胜肽 Val-Val-Tyr-Pro (VVYP) 為抑制腸道吸收三酸甘油酯之重要因子,其可經由促進肝臟 HTGL (hepatic triglyceride lipase) 之活性來降低三酸甘油酯之濃度達到降血脂之作用。本研究透過基因工程改造大豆儲藏性蛋白基因 Gy5,使其攜帶有 10 套降血脂活性胜肽 VVYP 之胺基酸序列,透過農桿菌轉殖技術,將含有 VVYP 之 Gy5 基因分別轉殖大豆及稻米,使其能大量表現帶有 VVYP 之 Gy5 基因,希望透過食用含 VVYP 之稻米及大豆,經由消化道酵素分解、吸收後,達到降血脂之功效,可大幅提高稻米及大豆之附加價值。轉殖水稻部分,利用水稻種子專一性 Glutelin 啟動子;轉殖大豆部分,利用大豆種子專一性 β-conglycinin α-subunit 啟動子 (BCAP) 及持續性表現 CaMV35S 啟動子,驅動降血脂活性胜肽 VVYP 10 套之胺基酸序列。另外透過人工合成 miRNA159-Gy5 (artificial microRNA),針對大豆內生性 Gy5 基因進行靜默,希望能抑制其原有之儲藏性蛋白 Gy5 之表現,使改造過之外來基因 Gy5-10VVYP 之表現量增加。由於大豆轉殖的困難,本研究也擬建立一個較完善、適用於本土大豆品種青仁烏豆 (Chin-Ren-Woo-Dow, CRWD) 之轉殖平台,因此針對本研究室建立之轉殖系統進行下胚軸培殖體再生測試、殺草劑 Phosphinothricin (PTT) 濃度篩選及農桿菌轉殖條件測試,並嘗試利用基因槍 (particle bombardment) 系統進行轉殖,希望能建立較完善之大豆轉殖系統。但目前仍未獲得任何大豆轉殖株。轉殖水稻部分,目前已獲得之 28 株 GluGy5VP10 水稻再生植株,經 PCR 確認,皆為轉殖株。經南方墨點法分析轉殖基因套數,大部份水稻轉殖株含有 1 或 2 套插入基因。以西方墨點法分析種子蛋白表現,在接近 60 kDa、50 kDa 、40 kDa、20 kDa 位置之蛋白,皆可被 Gy5、Anti-6X His tag 抗體所辨識,進一步利用液相層析-串聯質譜儀 (LC-MS/MS) 進行蛋白身分鑑定,在接近 60 kDa、50 kDa、20 kDa 位置之蛋白,可比對到Gy5-10VVYP 或 大豆 Glycinin 5 (Gy5) 蛋白。由以上結果確認 GlyGy5VP10 轉殖水稻種子可表現 Gy5-10VVYP。最後進一步針對水稻外源蛋白 Gy5-10VVYP 進行大量萃取純化,以利後續試驗確認 Gy5-10VVYP 可釋放出 VVYP 胜肽片段,並以動物試驗檢測其是否具有降血脂之功效。
URI: http://hdl.handle.net/11455/22072
其他識別: U0005-0802201116573400
Appears in Collections:分子生物學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.